
Mach Learn (2009) 74: 191–234
DOI 10.1007/s10994-008-5092-4

Incremental data-driven learning of a novelty detection
model for one-class classification with application
to high-dimensional noisy data

Randa Kassab · Frédéric Alexandre

Received: 24 February 2007 / Revised: 4 November 2008 / Accepted: 7 November 2008 /
Published online: 2 December 2008
Springer Science+Business Media, LLC 2008

Abstract Most conventional learning algorithms require both positive and negative training
data for achieving accurate classification results. However, the problem of learning classi-
fiers from only positive data arises in many applications where negative data are too costly,
difficult to obtain, or not available at all. This paper describes a new machine learning ap-
proach, called ILoNDF (Incremental data-driven Learning of Novelty Detector Filter). The
approach is inspired by novelty detection theory and its learning method, which typically
requires only examples from one class to learn a model. One advantage of ILoNDF is the
ability of its generative learning to capture the intrinsic characteristics of the training data by
continuously integrating the information relating to the relative frequencies of the features
of training data and their co-occurrence dependencies. This makes ILoNDF rather stable
and less sensitive to noisy features which may be present in the representation of the pos-
itive data. In addition, ILoNDF does not require extensive computational resources since
it operates on-line without repeated training, and no parameters need to be tuned. In this
study we mainly focus on the robustness of ILoNDF in dealing with high-dimensional noisy
data and we investigate the variation of its performance depending on the amount of data
available for training. To make our study comparable to previous studies, we investigate four
common methods: PCA residuals, Hotelling’s T 2 test, an auto-associative neural network,
and a one-class version of the SVM classifier (lately a favored method for one-class classi-
fication). Experiments are conducted on two real-world text corpora: Reuters and WebKB.
Results show that ILoNDF tends to be more robust, is less affected by initial settings, and
consistently outperforms the other methods.

Keywords ILoNDF · Novelty detection · One-class classification · Neural networks · Text
categorization

Editor: Tom Fawcett.

R. Kassab (�) · F. Alexandre
LORIA, INRIA Lorraine, Campus Scientifique, BP. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
e-mail: randa.kassab@loria.fr

F. Alexandre
e-mail: frederic.alexandre@loria.fr

mailto:randa.kassab@loria.fr
mailto:frederic.alexandre@loria.fr

192 Mach Learn (2009) 74: 191–234

1 Introduction

In standard two-class classification, data from two classes—positive and negative—are con-
sidered when developing classification models. However, the need to train classification
models from positive data alone arises in many applications where negative data are too
costly, difficult to obtain, or not available at all. This leads to the problem of one-class clas-
sification, which can also be described as a two-class classification problem where each
of the two classes has a special meaning, but only training data from the so-called “tar-
get” or “positive” class are available. The other class, for which no examples are available,
is considered the “outlier” or “negative” class and represents all other possible data not
belonging to the target class. A prototypical application of one-class classification is nov-
elty or anomaly detection where examples of the novel or abnormal class are very difficult
or expensive to acquire. Furthermore, in applications with highly unbalanced data, studies
have shown that ignoring all of the negative data and applying a one-class classifier yields
better performance, especially for the minority classes (Raskutti and Kowalczyk 2004;
Kassab and Lamirel 2007).

One-class classification is important in areas such as information filtering, web navi-
gation assistance and novel event detection. Such domains may lack clearly labeled neg-
ative examples for a variety of reasons (Žižka et al. 2006; Yu et al. 2004). For exam-
ple, some applications attempt to learn about users’ interest by recording visited docu-
ments or links, which are interpreted as positive examples of interest while non-visited
ones are interpreted as negative examples. But as Schwab et al. (2000) point out, the
non-selection of a document does not necessarily mean it is irrelevant or uninteresting;
the non-visited documents may perhaps be visited later, and classifying them as neg-
ative examples may be wrong. Moreover, users are often very busy and cannot give
enough examples of their needs, so a system may need to be trained on the basis of rel-
evant documents only, such as a user’s bookmarks or some early documents collected
by the user over a long time which are often the interesting results (Denis et al. 2003;
Žižka et al. 2006). Finally, for marketing reasons, users may actually be prevented from
giving negative ratings to products, advertisements or web pages.

The absence of negative data makes the one-class classification task more challenging
and very different from that of normal two-class classification. It is possible to apply adapted
versions of traditional two-class learning algorithms to solve a one-class problem, but this
often results in substantial degradation of performance. This degradation seems to be more
extreme for discriminative approaches than for generative ones (Japkowicz 2001). An ap-
proach that works well for a two-class or multi-class problem is not necessarily the best for
a single-class problem. Apart from performance considerations, there is also a problem of
setting an appropriate threshold (boundary) between two classes using data from just one.
Indeed, most of the adapted algorithms provide only a relevance ranking approach for sort-
ing new data with respect to the positive class, like the one-class KNN approach proposed
in (Žižka et al. 2006). In contrast, few others provide a parametric threshold like the one-
class SVM approach (Schölkopf et al. 2001). In both cases the decision threshold must be
provided by the user, and this may be neither desirable nor easy.

This paper deals with a new machine learning approach inspired by novelty detection
theory. The basic idea of novelty detection is to learn a model of the normal data of the
domain being monitored and then to automatically detect novel data that deviate from the
learnt model. The principle of novelty detection is mainly interesting for solving the one-
class classification problem since training typically involves examples from the normal class
alone. Several methods for novelty detection are proposed in the literature (Markou and

Mach Learn (2009) 74: 191–234 193

Singh 2003a, 2003b). The specific novelty detector filter (ILoNDF) we use is an adapta-
tion of a former novelty detection method (NDF) proposed by Kohonen (1989), which is
based on orthogonal projection operators. In addition to its simplicity, this method has the
desirable property that it operates on-line, which is essential in applications where memory
space is limited and real-time response is crucial. Although Kohonen’s novelty learning rule
is used as the basis of this method, developing it has involved major modifications and the
definition of appropriate strategies for exploiting the output of this new method to the clas-
sification goal. Our method is able to detect co-occurrence dependencies between features
of the training data, making ILoNDF fairly stable and less sensitive to noisy features which
may be present in the representation of the positive data.

The rest of this paper is organized as follows. We begin with a discussion of some work
related to one-class classification. In Sect. 3 we present the basic aspects of the NDF method
and illustrate how the ILoNDF method addresses some of NDF’s problems. We also discuss
the use of ILoNDF for one-class classification and the strategy of choosing the decision
threshold. Sections 4, 5 and 6 briefly review the principle of four common methods for one
class classification: PCA residuals, Hotelling’s T 2 Test, auto-associative neural networks,
and the one-class SVM. Section 7 describes the experimental settings, and Sect. 8 presents
empirical results and analyzes the findings. Section 9 concludes with remarks and some
directions for future work.

2 Related work

Although most existing studies of learning assume that examples of every class are available
for training (Sebastiani 2002), some prior work exists on the one-class classification problem
(Yu et al. 2004; Denis et al. 2003). Two principal approaches have been taken. The first
approach tries to artificially infer negative examples from a set of unlabeled examples and
then applies traditional two-class learning algorithms. The second approach learns directly
from positive examples alone.

The approach of extracting negative examples from a set of unlabeled ones has been
pursued by several researchers (Yu et al. 2003; Liu et al. 2003; Li and Liu 2003). They have
argued that unlabeled examples are readily available, e.g. from the World Wide Web, so their
main objective is to reduce manual labeling effort while maintaining performance as high
as that of traditional learning approaches, which learn from labeled positive and negative
examples. Most such work follows a two-stage approach:

1. An initial classifier is built using either positive examples alone (e.g. 1-SVM in Yu et al.
2003) or a combination of both positive and unlabeled examples (assuming the latter as
negative examples, Li and Liu 2003; Liu et al. 2003). The resulting classifier is then used
to identify strong negative examples from the unlabeled set;

2. A two-class learning method (e.g. SVM and EM, Yu et al. 2003; Li and Liu 2003; Liu
et al. 2003) is run iteratively to find additional negative examples from the remaining
unlabeled set. The best or final classifier is then selected.

Classification performance varies depending on the different techniques used in each stage.
Details are available in (Liu et al. 2003; Fung et al. 2006). A recent paper (Fung et al.
2006) presents an algorithm called PNLH which follows a somewhat different strategy. At
the second stage it tries to enlarge the positive example set by extracting strong positive
examples from the unlabeled set as well. Results show that PNLH generally improves the
quality of classification with respect to the former strategy, especially when the number of
positive examples is extremely small.

194 Mach Learn (2009) 74: 191–234

There are three drawbacks to the above general approach.

1. Extracting negative examples from unlabeled ones is unreliable and requires caution.
Indeed, this approach is based on the assumption that unlabeled examples are noisy neg-
atives, i.e. the proportion of positive examples in the unlabeled set is very small (cf. Yu
et al. 2003), so that the classifier used in the first stage would identify strong negatives
and exclude positive ones. Even if this were not the case, many positive examples would
wrongly be extracted as negative examples, and the resulting performance would be poor
and would degrade with iteration steps. For this reason we advocate the use of one-class
classifier for the first stage (e.g. 1-SVM in Yu et al. 2003) in order to address these con-
cerns;

2. Most existing methods perform poorly when the number of positive examples is small.
Moreover, the unlabeled set must be sufficiently large to find the best classifier;

3. Finally, the iterative approach to find negative examples greatly increases the time com-
plexity of the learning algorithm.

Although these drawbacks may not be important in all applications, they present serious
limitations in some, and for these the strategy of learning from positive examples alone
becomes an attractive alternative. Relatively little attention has been paid to the problem,
however. Some early work on this issue was explored in the fields of pattern recognition and
novelty detection (Japkowicz et al. 1995; Japkowicz 2001). We briefly review some of this
work.

Early work on the one-class learning problem was based on neural networks. A novelty
detection approach to classification based on the use of an auto-associative neural network
(AANN) is reported in (Japkowicz 2001). The auto-associator is a feedforward three-layer
network, with the same number of input and output neurons and significantly fewer hidden
neurons. The AANN is trained to reconstruct the input data (positive examples) as out-
put. After training, the reconstruction error of each novel input example is calculated and
classification is performed, relying on the assumption that positive data will be accurately
reconstructed while negative data will not. However, this technique involves few negative
examples to adequately set the decision threshold in the case of noisy data where the ex-
pected quality of separation between positive and negative reconstruction errors is low.

More recently, one-class versions of support vector machines have been developed
(Schölkopf et al. 2001; Tax and Duin 2001; Manevitz and Yousef 2001). The idea of the
1-SVM approach proposed by Schölkopf et al. (2001) is to map the positive data into a fea-
ture space corresponding to a kernel and to separate them from the origin, the only negative
data, with maximum margin. In addition to requiring a user to provide the basic parameters
of the SVM, the 1-SVM approach requires fixing a priori the percentage of positive data al-
lowed to fall outside the description of the positive class. This makes 1-SVM more tolerant
to outliers in the positive data. However, setting this parameter is not intuitive and its value
strongly influences the performance of 1-SVM.

Another approach, the SVDD method proposed by Tax and Duin (2001), tries to find
a hypersphere with minimum volume that encloses all or most data in the positive class.
The constraint of minimal volume is applied to minimize the chance of accepting negative
data. SVDD automatically optimizes the 1-SVM parameter by using artificially generated
unlabeled data uniformly distributed in a hypersphere around the positive class. Even so,
the optimization method is not applicable in high-dimensional spaces (e.g. more than 30
dimensions).

A somewhat different version of 1-SVM (outlier-SVM) is proposed by Manevitz and
Yousef (2001). Their approach is to assume not only the origin as in the negative class but

Mach Learn (2009) 74: 191–234 195

also all data that are “close enough” to the origin are to be considered as negatives or outliers.
The identification of outliers is accomplished by counting the number of non-zero features
of a datum vector; if this number is less than a threshold then the datum is considered
as a negative example, otherwise it is positive. The assumption behind this approach is
that a datum which shares very few features with the feature set selected to represent the
positive data is not a good representative of the positive class and can be treated as an
outlier. Experimental results obtained on a text benchmark dataset show this approach does
generally worse than the 1-SVM approach.

In the same paper, Manevitz and Yousef compare 1-SVM with one-class versions of
the algorithms: Rocchio, Nearest Neighbor, Naive Bayes, feed-forward neural network
(AANN). They conclude that 1-SVM and AANN are better than other methods tested. How-
ever, it is not clear how the decision threshold was set for the evaluated methods apart from
1-SVM. Lee and Cho (2006) also compared the performance of 1-SVM and AANN for
the purpose of novelty detection. Empirical results from six benchmark datasets show that
1-SVM performs consistently better than AANN.

3 The ILoNDF model

Having discussed two general approaches to this problem, we introduce ILoNDF, a method
of the second kind which learns from positive examples alone.

3.1 Background

Kohonen and Oja (1976) introduced the first novelty filter. It is an orthogonalizing algorithm
that passes through only the “novelty” component of an input vector with respect to all
of the earlier input data. Basically, the novelty filter relies on the properties of orthogonal
projection operators. Let there be m distinct Euclidean vectors, denoted x1, x2, . . . , xm ∈ �n,
which span a subspace ζ ⊂ �n. The complement space of ζ , denoted ζ⊥, is spanned by all
vectors in �n which are orthogonal to ζ . Then, any arbitrary vector x ∈ �n can be uniquely
decomposed into the sum of two vectors x̂ ∈ ζ and x̃ ∈ ζ⊥. One particular property of the
orthogonal projections is that of all possible decompositions of x = ẋ + ẍ where ẋ ∈ ζ , the
one stated above is subject to ‖x̃‖ = min‖ẋ‖ ‖ẍ‖; in other words, the norm of x̃ is equivalent
to the distance of x from ζ . The component x̂ of the vector x is the orthogonal projection
of x on ζ while the component x̃ is the orthogonal projection of x on ζ⊥. The matrix
operator representation of the projections provides a guideline which can help to calculate
the orthogonal projections x̂ and x̃ as outlined hereafter. Let X ∈ �n×m be a matrix with
the xi vectors as its columns, and X+ be the pseudo-inverse of X.1 Then XX+ is a matrix
operator which projects a vector x on ζ :

x̂ = XX+x. (1)

Similarly, I − XX+ is the operator which projects x on ζ⊥:

x̃ = (I − XX+) x (2)

with I being an identity matrix.

1Penrose showed that there exists a unique generalized pseudo-inverse for any rectangular matrix (Penrose
1955).

196 Mach Learn (2009) 74: 191–234

With respect to the above findings, the component x̃ can be regarded as the residual
contribution in x that is left when a particular information processing operation is applied
to x. So if a system is established with the matrix of Eq. 2 as its transfer function, x̃ may
be interpreted as the amount that is maximally new or independent in an input vector x

according to previous vectors xi . In (Kohonen and Oja 1976) an artificial neural network for
implementing the principle of novelty detection is developed and shown to be equivalent to
the orthogonal projection operators under certain conditions. The next section describes the
architecture of the neural system, viz. the NDF model.

3.2 NDF implementation

Kohonen and Oja (1976) implemented the NDF model with a recurrent network of neuron-
like adaptive elements with internal connections. It consists of n fully connected feedback
neurons, where n is the dimensionality of the input vectors, and so that all neurons are both
input and output neurons. Figure 1 shows the typical architecture of such a network. The
output of each neuron η̃i is determined by a linear combination of the external input ηi to
that neuron and the feedback it receives from the output:

η̃i = ηi +
∑

j

mij η̃j . (3)

The weights mij associated with the feedback connections provide the variable internal state
of the network. They are initially set to zero and are updated after each presentation of an
input vector using an anti-Hebbian learning rule:

dmij

dt
= −αη̃i η̃j (4)

where α is a small positive parameter that can be adaptively modified during learning.
Thus, strongly correlated output neurons will have strong inhibitory connections, which

will reduce their correlation. This decorrelation can lead to suppressing the redundant ac-
tivity of input features which code the overlap between similar data. Aside from removing
correlations between the features, self-feedback connections tend to decrease the activity of
individual features. The above module can now be expressed as a matrix operator Φ ∈ �n×n

with the following equations:

Fig. 1 The basic architecture of
the NDF model

Mach Learn (2009) 74: 191–234 197

x̃ = x + Mx̃ = (I − M)−1x = Φx,

(5)
dM

dt
= −αx̃x̃T .

The differential equation for Φ is given by:

dΦ

dt
= −αΦ2xxT ΦT Φ. (6)

This is a Bernoulli matrix differential equation of degree 4. Although its solution seems
difficult, Kohonen and Oja (1976) show that it has stable asymptotic solutions if α ≥ 0. The
approximate solutions are obtained under certain simplifying assumptions on the input data
and the initial conditions of the matrix Φ . The assumptions are: (1) x is applied at the input
and held constant for a sufficiently long period of time; (2) Φ0 is initially a projection matrix,
i.e. symmetrical and idempotent. Thereby, the state matrix Φ is allowed to approximately
converge towards another projection matrix on the space R(Φ0) ∩ ζ⊥ where R(Φ0) is the
range space of Φ0 and ζ⊥ is the orthogonal complement of the space spanned by the xi

vectors (cf. Sect. 3.1). In particular, a special case of projection matrices which is consistent
with the definition of the novelty filter is the identity matrix. Starting from a projection
matrix Φ0 = I , the filter will initially act as an identity operator for any data applied to its
input and the state matrix will always attain a stable state given by:

Φc = I − XX+ (7)

which is the projection operator on the space R(I) ∩ ζ⊥ = ζ⊥, which is orthogonal to the
space spanned by the xi vectors.2

However, for high-dimensional data, the neural model of NDF is computationally costly
since the network is fully-connected and the number of neurons equals the dimensionality of
the input space. To prevent this complexity, a computationally easier method is to directly
compute the stable state Φc using any pseudo-inverse algorithm (Ben-Israel and Greville
2003). In this study we are interested in Greville’s theorem for the purpose of an on-line
solution (Greville 1960). Moreover, Greville’s method has been found to give the fastest
computation time (Noda et al. 1997). The theorem provides a recursive computation of the
Moore-Penrose inverse of a matrix yielding a recursive expression of the transfer function
of the NDF model (Eq. 7) as described below.

Let X be a matrix with x1, x2, . . . , xk its columns and let it be partitioned as [Xk−1, xk]
such that the matrix Xk−1 comprises previously learnt data while xk is a new input datum.
The theorem of Greville states:

X+
k =

⎡

⎣
X+

k−1(I − xk P T
k)

− − − − − − −−
P T

k

⎤

⎦ , where (8)

Pk =

⎧
⎪⎨

⎪⎩

(I−Xk−1X+
k−1)xk

‖(I−Xk−1X+
k−1)xk‖2 if the numerator 	= 0,

(X+
k−1)T X+

k−1xk

1+‖X+
k−1xk‖2 otherwise.

2The reader can refer to (Kohonen 1989) for more details and theoretical justifications of the model.

198 Mach Learn (2009) 74: 191–234

and the recursive procedure is initiated with

X+
1 =

{
xT

1 (xT
1 x1)

−1 if x1 	= 0,

0T if x1 = 0.

Based on the above, it then follows that:

XkX
+
k = Xk−1X

+
k−1(I − xk P T

k) + xk P T
k . (9)

If (I − Xk−1X
+
k−1)xk is a zero vector the above formula yields XkX

+
k = Xk−1X

+
k−1; for a

non-zero vector the upper expression for Pk is applied. For both cases the recursive form of
Φ after the presentation of x1, . . . , xk at the filter input can be written:

Φk = I − XkX
+
k

= (I − Xk−1X
+
k−1) − (I − Xk−1X

+
k−1)xkx

T
k (I − Xk−1X

+
k−1)

‖(I − Xk−1X
+
k−1)xk‖2

. (10)

Note that (I − Xk−1X
+
k−1) is the transfer function of NDF after the presentation of all the

vectors x1, . . . , xk−1. Therefore Eq. 10 can be put into the following form:

Φk = Φk−1 − x̃kx̃
T
k

‖x̃k‖2
(11)

where x̃k = Φk−1xk represents the orthogonal projection of the data xk on a space that is
orthogonal to the space spanned by the k−1 learnt data, and the recursion starts with Φ0 = I .

The amount of novelty in an input vector xi with respect to the previous vectors xk can
be specified by

Nxi
= ‖x̃i‖

‖xi‖ . (12)

The complementary amount Hxi
= 1 − Nxi

can be used as indicator of the similarity of xi

(its habituation) with respect to the previously learnt data.
To recapitulate, the work of the NDF model with Eq. 11 as its transfer function, and its

input and output related by x̃ = Φkx, can be summarized as follows. During the learning
phase the NDF model adapts to the reference data presented as input. Once learning is
complete, if one of the reference data or a combination of it is applied to the filter input,
the novelty output will be zero. On the other hand, if a novel datum not belonging to the
space spanned by the reference data is chosen as an input, the corresponding output will be
nonzero; it will be seen as representative of the new features extracted from the input data
with respect to the reference data.

3.3 On the strengths and weaknesses of NDF

The ability of NDF to operate in an on-line mode without repeated training is highly de-
sirable for many on-line and real-time one-class classification applications, such as surveil-
lance and event detection tasks. Moreover, NDF contains no parameters to be tuned before
or during training, so there is no need to perform additional computations.

Mach Learn (2009) 74: 191–234 199

On the other hand, being biologically inspired by the orthogonalization ability of the
hippocampus,3 NDF tends to act as a long-term memory recognizing quickly a datum on
which it was trained. Still, NDF is biologically implausible in the sense of being unassoci-
ated with time-dependent forgetting capacities. With knowledge of these characteristics, we
can expect the behavior of NDF as follows:

• If an input datum appears only occasionally it will not be considered novel during its
future appearances, and the NDF model will recognize it no matter the time interval be-
tween occurrences and whether the datum is more often seen or not. In the context of
one-class classification, this behavior requires that training data be noise-free (which is
often unrealistic); otherwise, NDF will fail to give a reliable description of the target class.

• The inability of NDF to forget makes it inadequate to deal with dynamic environments
where the target data may change over time, for example in robotic exploration and in-
spection tasks (Marsland et al. 2000).

However, note that an adaptation of the NDF model with forgetting is also discussed
in (Kohonen 1989). This was motivated by the fact that memory traces are allowed to
decay in physical systems. A forgetting factor (β > 0) is introduced that decreases all the
feedback connection weights at a rate directly proportional to their values. The weight
update formula, in matrix notation, then becomes:

dM

dt
= −αx̃x̃T − βM. (13)

Instead of Eq. 6, the following more general differential equation is now obtained:

dΦ

dt
= −αΦ2xxT ΦT Φ + β(Φ − Φ2). (14)

Unfortunately, the solution of this equation is not easy to derive and might not have the
implicitly required convergence properties (Aeyels 1990). In addition, Kohonen (1989)
stated that—under the same assumptions made for the NDF model—the asymptotic so-
lution with forgetting has the same form as a solution of the original equation without
forgetting, and thus, will tend to a matrix which is approximately a projection matrix.

• The characteristic time of habituation to a given feature—which denotes the number
of reference data containing that feature and which have been presented to the NDF’s
input—is rather short (inversely propositional to the number of features present in the
data). Allowing such fast habituation to the features during the learning phase has a dis-
advantage in technical applications where training data may include some noisy features,
e.g. text or bioinformatics data. In fact, Kohonen’s learning rule (cf. Eq. 11) is mainly de-
signed to distinguish the novelty parts from the old (habituated) parts in the input data with
respect to the previously seen reference data. Accordingly, only novel parts are passed
through the filter and will be considered when modifying the internal state through the
feedback connections. This will not only accelerate the habituation of the filter to the
features that have not been seen before but also will prevent the filter from improving
the acquired knowledge about previously habituated features. In this case, almost all of

3The hippocampus is a region of the brain which is believed to play an essential role in learning and memory
processes, such as the representation and retrieval of long-term memories—any type of novelty detection
requires the retrieval of previously seen stimuli—and the formation of new memories about experienced
events (Sirois and Mareshal 2004). Another area of the brain which is thought to be involved in dealing with
novelty is the perirhinal cortex also belonging to the hippocampic system (Brown and Xiang 1998).

200 Mach Learn (2009) 74: 191–234

the relevant features will be approximately habituated after some training data have been
presented, and consequently their presence in the ensuing training data will nearly be ig-
nored, allowing faster habituation to noisy features which might be present in the training
data.4 In this regard, relevant and noisy features will be of about equal importance in
the description of training data, which can greatly diminish the classification or detection
accuracy.

To illustrate some of the above points, consider the following two simple cases.

Case 1: Sample Data #1 and #2

Suppose we have the following three training data d1, d2, d3 ∈ �3:

Sample Data Set #1

d1 d2 d3

f1 1 1 1
f2 0 1 1
f3 0 0 1

After training on the above data, the transfer function of the filter is Φ3 = 0, a zero
matrix. Therefore the novelty space is the null space, meaning that all the training data
and their linear combinations have been habituated totally (d̃1, d̃2 and d̃3 are null vectors).
In particular, we can calculate the novelty and habituation proportion of the features by
projecting the unit vector −→

uf associated with each feature on the novelty space; using the
following formulas:

Nf = ‖Φ3
−→
uf ‖

‖−→uf ‖ , Hf = 1 − Nf .

Then, we get:

Hf1 = Hf2 = Hf3 = 1.

This means that all the features f1, f2 and f3 have been totally habituated by the model and
will have the same importance when representing the training data, despite the fact that f1

is more correlated with the description of training data than the other features and that f2

is more prevalent than f3, which could be a noisy feature. This phenomenon is due to the
fast learning of features that is characteristic of the NDF model. So once a feature is totally
habituated it will no longer be considered in subsequent learning steps (i.e. the presence or
absence of such a feature in the ensuing training data will not affect learning in subsequent
steps). This is mainly because learning is guided by the novelty vector alone. For example,
training the NDF model on the following training data:

Sample Data Set #2

d1 d2 d3

f1 1 0 0
f2 0 1 0
f3 0 0 1

4This can explain the tendency of NDF to be more effective on low-dimensional data, as will be shown in the
experimental results of Sect. 8.1.

Mach Learn (2009) 74: 191–234 201

will yield the same results as when training on the Sample Data Set #1. On this basis, we can
conclude that the fact that the NDF’s learning is only guided by the novel part of the input
data (the novelty vector) increases the learning possibility of non-discriminating features.
In other words, the NDF’s learning allows noisy features (such as the feature f3 in Sample
Data Set #1) to become approximately as habituated as relevant features (such feature f1 of
the same data set). Obviously, this problem cannot be solved by further training since the
filter matrix is null.

Case 2: Sample Data #3

Suppose now we have the following training data:

Sample Data Set #3

d1 d2 d3 d4 d5 d6 d7 . . .

f1 1 1 0 0 0 0 0
f2 0 1 0 0 0 0 0
- -
f3 0 0 1 0 1 1 1
f4 0 0 0 1 1 1 0
f5 0 0 0 0 1 0 1

After presenting d1 and d2 at the input of NDF, the filter will be totally habituated to both
data as well as to their features f1 and f2. If we continue training by presenting data with
different characteristics, the filter will learn the new data and their features while always re-
membering the former ones (f1, f2). This is not suitable for classification since although the
first two data are not frequently presented to the filter, their features are totally habituated
and will play an important role in describing the training data. Moreover, for some applica-
tions, it would be desirable to gradually discard the knowledge acquired about the old data
and to consider them as novel if they are not frequently seen.

3.4 Incremental data-driven learning of NDF

The above concerns motivate an adaptation of the NDF’s learning rule. Two critical issues
should be considered in designing the new learning rule. First, all of the features of the input
data should be considered throughout the course of training, regardless of whether they are
already habituated. Second, knowledge about how much a datum or feature is novel should
be taken into account continuously in order to maintain the principle of novelty detection.

With respect to these requirements, several adaptations of the NDF’s learning rule have
been investigated. Two among these were found rational to guarantee the fulfillment of the
requirements necessary to address the NDF’s defects. The first adaptation was guided by the
assumption that the main defect of NDF comes from the fast habituation to the features of
the training data, which often leads to a full saturation of the model (this corresponds to the
case where Φ = 0; that is, the novelty space is equivalent to the null space). This is mainly
because learning begins with an identity matrix Φ0 = I , so if a feature fi appears alone
in a training datum (or several times with other features) it will become totally habituated
by the model (Φik = 0, Φki = 0, ∀k). After this it will not be taken into account in further
learning. Therefore, the simplest solution is to use the original learning rule while starting
the recursion with a scalar matrix in which all of the diagonal elements are set to the number
of training data. The results obtained by this solution are slightly inferior to those of the
second solution we will present (Eq. 15). In addition, the number of training data must be
known in advance, which is unsuitable for on-line classification applications.

202 Mach Learn (2009) 74: 191–234

The second solution originated from the fact that NDF’s learning update is only guided
by the novel part of the input data (the novelty vector x̃). This implies that once a feature be-
comes totally habituated by the filter it will no longer be considered in the updating process.
To prevent this, the best strategy we found is to introduce the identity matrix at each step of
training and to project each input datum on both identity and filter matrices. The resulting
learning rule can be put in the form:

Φk = I + Φk−1 − x̃kx̃
T
k

‖x̃k‖2
(15)

where x̃k = (I + Φk−1)xk and Φ0 is a zero, or null, matrix. In this way, we can satisfy
the first requirement by projecting each of the training data xk on the identity matrix. This
implies that each of the features present in the data xk will take part in the updating process,
regardless of the amount of novelty or redundancy in the data under consideration. This is
especially important in dealing with situations in which a datum or feature has already been
seen and its projection on the space spanned by the filter is zero. The second requirement
is satisfied by simultaneously projecting the same data xk on the NDF transfer function
corresponding to the older training data. As learning progresses, features which frequently
appear in the training data become more and more habituated as compared with less frequent
ones. This typically helps discriminate more accurately the positive and negative data. The
learning is driven not only by the proper novelty part in the data (Φk−1xk) but also by the
data itself (Ixk ≡ xk). At each presentation of datum x our model can extract new knowledge
about that datum and its relationships with respect to the old learnt data. Accordingly, we
call this model Incremental data-driven Learning of NDF (ILoNDF).

A better description of the model may be obtained by investigating the behavior of the
ILoNDF learning rule in the eigenspace corresponding to its state matrix. It is well known
that if {λi} are the eigenvalues of a square matrix X then {λi + λ} are the eigenvalues of
the matrix X + λI ; in addition, matrices X and X + λI have a common orthonormal basis
of eigenvectors {ui}. Therefore, matrices {Φk−1} and {I + Φk−1} of Eq. 15 have the same
eigenvectors and their corresponding eigenvalues differ by 1. In other words, the introduc-
tion of the identity matrix does not change the direction of the eigenvectors of the matrices
{Φk−1} but transforms them to a sequence of positive-definite matrices {I + Φk−1}, with
eigenvalues strictly greater than zero, while preserving the relative ordering of the eigenval-
ues. As a result, eigenvectors that are not orthogonal to the space spanned by the reference
data will reside in the space spanned by the model but will stay less significant than other
orthogonal eigenvectors. The orthogonality conditions are no longer satisfied between the
space spanned by the filter and that of the reference data. Instead, the dimensionality of the
space spanned by the model will still be of the same order as the representation space.

As an illustration, Fig. 2 shows the behavior of ILoNDF in the eigenspace corresponding
to the state matrix of the model. At the first step ILoNDF acts like NDF. After training on
x1 the state matrix has two eigenvectors: one is orthogonal to the training data x1 and the
other is in the direction of x1 with a zero eigenvalue. As stated earlier, adding the identity
matrix to Φ1 results in an increase of the eigenvalues by 1, i.e. the amount of information
explained by the eigenvector u1 becomes only two times greater than the amount of infor-
mation explained by the eigenvector u2. After training on x2, the eigenvectors are rotated
in different directions with different eigenvalues in order to enhance the overall represen-
tation of the various features in the training data. Specifically, u1 represents 72.4% of the
information with the remaining 27.6% being represented by u2. Now if x1 (or x2 or any
linear combination of them) is applied again to the model, it will not be seen as a redundant

Mach Learn (2009) 74: 191–234 203

Fig. 2 Example of the behavior
of the ILoNDF model in the
eigenspace corresponding to the
state matrix of the model.
Training data are x1 = (1 1),
x2 = (1 0) and x3 = (1 1). The
eigenvectors are indicated by u1,
u2 and their corresponding
eigenvalues by λ1, λ2

information and the model will continuously change its knowledge about the training data.
In contrast, with NDF the novelty space spanned by the model will be the null space Φ2 = 0
after the presentation of x1 and x2. Afterwards the presentation of x1 or any data which can
be explained as a linear combination of x1 and x2 will not change the acquired knowledge
of the model.

Our modification of the original learning rule results in another interesting aspect of
ILoNDF: it has the ability to capture co-occurrence relationships between features in the
training data. An analysis of the learning process of ILoNDF reveals that, during learning,
if a feature i appears with a feature j within a training datum, the value of the ij th element
of the filter matrix will decrease. Subsequently, if the feature j appears with a feature k

without i within a training datum, the value of the jkth element of the filter matrix will
decrease while the values of the ij th and ikth elements of the filter matrix will increase.
When learning terminates, the negative value of a matrix element, say Φij , will thus reveal
the co-occurrence dependency between features i and j . This means that they appear at
least one time together, whereas a positive value indicates independence between the two
features. Thus we can interpret the resulting matrix Φk of ILoNDF as a feature-by-feature
co-occurrence dependency matrix. This ability helps ILoNDF identify features that correlate

204 Mach Learn (2009) 74: 191–234

within the training data, making it more robust with respect to noisy features.5 Still, it is
worth noting that such a relationship between features is captured by the NDF learning
rule as well. However, once a feature becomes completely habituated all information about
its relation with other features will be lost. This can be verified by observing the internal
structure of the state matrices ΦNDF and ΦILoNDF of the models in Sect. 3.6.

To clarify how the modified rule (Eq. 15) can address the main defects of the original
rule, consider the simple cases of Sect. 3.3.

Case 1: By training ILoNDF on Data Set #1 we obtain the transfer function of the model:

Φ3 = 3 ×
⎛

⎝
0.556 −0.192 −0.099

−0.192 0.657 −0.127
−0.099 −0.127 0.789

⎞

⎠ .

If we now calculate the habituation proportions of the features and divide them by the num-
ber of training data (cf. Sect. 3.5, Eq. 17), we get:

Hf1 = 0.405 > Hf2 = 0.304 > Hf3 = 0.195.

As can be seen, the presence of f1 within all the training data are taken into account and
accordingly, it is now more habituated than the other features and will be considered more
important when representing the training data.

Training ILoNDF on Data Set #2 will not yield the same results. The features will be
equally learnt as they have the same frequency in the training data.

Case 2: This case serves to highlight how the ILoNDF model tends to implicitly incorporate
some forgetting effects on old or rare data. Figure 3 shows the habituation proportions of
the f1 and f2 features over training time steps. Unlike with the NDF model, the habituation
of the ILoNDF model to both f1 and f2 tends to decrease over time.

3.5 Using ILoNDF for classification

Training ILoNDF on a set of positive data leads to the development of the transfer function
of the filter under a matrix representation Φ . If a new example is then presented as input, a
vector will appear at the output which represents the new features extracted from the input
data after taking into account the occurrence frequency of each of the features and their
relationships in the training data. Applying the ILoNDF model to one-class classification is
straightforward and can be done in either of the following ways.

• The Direct-Projection Method (DPM): The straightforward way is to project each new
datum, say xi , on the filter matrix Φ to generate a novelty vector x̃i = Φ · xi . Two propor-
tions can thus be computed:
– The “novelty proportion” which quantifies the novelty in the data under consideration

with respect to the data that were seen during training.

Nxi
= ‖x̃i‖

n × ‖xi‖ (16)

where n is the number of positive training data.

5This ability of ILoNDF to capture co-occurrence relationships between features can be of benefit in many
analysis tasks. We have undertaken a first application in the context of information filtering for analyzing
different types of user’s needs (Kassab and Lamirel 2007).

Mach Learn (2009) 74: 191–234 205

Fig. 3 Forgetting effect of the
ILoNDF model. ILoNDF is
trained on the sample data #3.
Owing to the fact that features f1
and f2 do not appear any more in
the description of training data
after the second time step, their
proportions of habituation
decrease monotonically over time

– The “habituation proportion” which quantifies the redundancy (or similarity) of the
data with the previously learnt ones.

Hxi
= 1 − ‖x̃i‖

n × ‖xi‖ . (17)

This second proportion could be considered a “classification score” of the data xi

indicating the likelihood that the example belongs to the positive class: the higher the
habituation proportion, the higher the similarity of the data to the positive class.

• The Vector-Based Projection Method (V-PM): It is also possible to create from the matrix
representation of the filter (Φ) a representative vector (Pv) of the positive training data.
The classification score of each new example is then computed by comparison to the
representative vector as explained below.

The projection of the unit vector −→
uf —associated with the direction of a feature f in

the representation space—on the filter matrix Φ can be used to compute the habituation
proportion of this feature as follows:

Hf = 1 − ‖Φ−→
uf ‖

n × ‖−→uf ‖ . (18)

The representative vector of positive data is represented as a linear combination of the
unit vectors associated with the features of the representation space F in a unique way,
that is:

Pv =
∑

f ∈F

Hf
−→
uf . (19)

In other words, the representative vector is defined as a vector of weights correspond-
ing to the habituation proportion of the features in the data representation space F . Finally,
the classification score of an example xi with unknown class is computed using the cosine
similarity between the representative vector and the example (Salton 1971):

Cos(xi,Pv) = xi � Pv

‖xi‖ ‖Pv‖ (20)

where xi � Pv denotes the dot product of these two vectors.

206 Mach Learn (2009) 74: 191–234

The two methods above behave differently and can have a significant impact on classi-
fication performance. In general, DPM is a specific data-matching procedure which deter-
mines the novelty of a given example with respect to the training data (with the NDF model,
the matching is performed between the example under consideration and the closest train-
ing data. In contrast, the ILoNDF model considers the co-occurrence of features and their
relationships within all the training data when performing the matching process. See the
example below for clarification). In contrast, V-PM is a feature-matching procedure which
takes advantage of the diversity of the habituation values of the learnt features to distinguish
between positive and negative data. It will favor data containing a greater number of features
with high habituation values. In our previous work we found V-PM to be more accurate than
DPM, especially when only a few positive data are available (Kassab and Lamirel 2006,
2007). Nevertheless, if all the features have approximately the same proportion of habit-
uation (often owing to the lack of a correct representation of the training data, e.g. using
insufficient or inappropriate features) the quality of the representative vector of the training
data can be very poor. In this case, the values of the vector components would have low
variance. We can view the variance of the vector components as indicative of its usefulness
for classification.

To avoid such a situation, a weighted combination of the classification scores according
to both DPM and V-PM into a global score CS may be calculated as follows:

CS(xi) = (1 − λ)Hxi
+ λCos(xi,Pv) (21)

with

λ = standard deviation of Pv

max value − min value of the Pv components
.

The pseudocode for the ILoNDF learning method is shown in Algorithm 1.

3.6 An illustration

For clarity, we present an example showing the main defect of the original learning rule
of the NDF method (Eq. 11) when applied to the classification task, which motivates our
modification of this rule. The example also illustrates the impact of both DPM and V-PM on
the classification solution of both NDF and ILoNDF models.

Let us consider the data presented in Table 1 and suppose that the first three data items
d1, d2 and d3 are selected for training the NDF and ILoNDF models.

After training, we obtain the transfer function of the NDF model:

ΦNDF =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0.6 −0.2 −0.4 −0.2
0 −0.2 0.4 −0.2 0.4
0 −0.4 −0.2 0.6 −0.2
0 −0.2 0.4 −0.2 0.4

⎞

⎟⎟⎟⎟⎠

and the transfer function of the ILoNDF model:

ΦILoNDF = 3 ×

⎛

⎜⎜⎜⎜⎝

0.792 −0.089 0.018 −0.089 −0.107
−0.089 0.769 −0.152 −0.231 −0.079

0.018 −0.152 0.798 −0.152 0.050
−0.089 −0.231 −0.152 0.769 −0.079
−0.107 −0.079 0.050 −0.079 0.871

⎞

⎟⎟⎟⎟⎠
.

Mach Learn (2009) 74: 191–234 207

Algorithm 1 LearnILoNDF(X,F,Φ0)
Inputs:

X = {x1, . . . , xn} a set of positive training data;
F = {f1, . . . , fm} a set of features used for representing the training data;
Φ0 the initial matrix of the ILoNDF model (default: a zero matrix).

Outputs:
Φn the final matrix of the ILoNDF model;
Pv the representative vector of target class.

Initialization:
P 0

v = 0 {a zero, or null, vector}.

begin
for each xk ∈ X do

x̃k = (I + Φk−1)xk

Φk = I + Φk−1 − x̃kx̃
T
k

‖x̃k‖2

end for
for each fi ∈ F do

Hfi
= 1 − ‖Φn

−→
ufi

‖
n × ‖−→ufi

‖
P (i)

v = P (i−1)
v + Hf

−→
uf

end for
end

Table 1 Sample feature-by-data matrix

d1 d2 d3 d4 d5 d6 d7 d8

f1 1 0 1 0 1 0 0 1

f2 1 1 1 0 1 1 0 1

f3 1 1 0 1 0 0 1 1

f4 1 1 1 0 0 0 0 1

f5 0 0 1 0 0 1 1 1

On the basis of these matrices, the representative vectors of training data with respect to
the NDF and ILoNDF models can be constructed using Eq. 19. They are respectively:

P NDF
v = (

1 0.225 0.368 0.225 0.368
)T

,

P ILoNDF
v = (

0.191 0.174 0.172 0.174 0.114
)T

.

Recall that the value of each component in the representative vector corresponds to the
habituation proportion of one feature in the representation space. As can be seen from P NDF

v ,
f1 is much more habituated than the others, and accordingly it will be considered more rel-
evant to the description of training data. Moreover, f5, which is less frequent in the training
data, is more habituated than other more frequent features such as f4. In contrast, applying

208 Mach Learn (2009) 74: 191–234

Table 2 Ranking and Classification scores according to the DPM and V-PM methods (Comparison between
NDF and ILoNDF)

DPM V-PM CS

Doc. Score Doc. Score Doc. Score

NDF d1, d2, d3 1 d8 0.835 d1, d3 0.907

d8 0.717 d1, d3 0.776 d8 0.766

d5, d6 0.452 d5 0.740 d2 0.752

d4 0.368 d7 0.444 d5 0.572

d7 0.106 d2 0.403 d6 0.413

d6 0.358 d4 0.345

d4 0.314 d7 0.246

ILoNDF d2 0.560 d8 0.987 d8 0.704

d1 0.530 d1 0.952 d1 0.692

d8 0.527 d3 0.874 d2 0.653

d3 0.511 d2 0.804 d3 0.650

d5 0.255 d5 0.691 d5 0.422

d6 0.209 d6 0.544 d6 0.338

d4 0.172 d7 0.541 d4 0.282

d7 0.083 d4 0.460 d7 0.258

the modified learning rule of Eq. 15 reduces the gap between the habituation of f1 and the
other features (f2, f3 and f4) while reducing the habituation of f5.

Now we can calculate the classification scores of the data in Table 1 (using DPM, V-PM
or CS) and rank them in terms of their similarity to the training data. Table 2 shows the
ranking of the data by different methods in decreasing order of similarity to the training
data.

From Table 2 we may see that only NDF with the direct projection strategy was perfectly
habituated to the training data (d1, d2, d3). This behavior is consistent with the design of
the model and the bit-wise matching of the DPM strategy. Note also that the NDF model
is unable to distinguish well between features that are correlated with the description of
training data (the relevant features) and those that are not (irrelevant features). This situation
is especially obvious in the case of d5 and d6, which are assigned the same score, whereas d5

is more similar to the training data. In contrast, when looking at the ranking performed by
the ILoNDF model with the direct projection strategy, we find that the model is not totally
habituated to the training data and that the matching is performed against all the training data
and not just the closest training data. This is beneficial for distinguishing between relevant
and irrelevant features, and accordingly, for distinguishing between relevant and irrelevant
data. As can be seen from Table 2, d6 was assigned a lower similarity score than d5 by the
ILoNDF model.

If we compare DPM with V-PM when using the NDF model, we find that V-PM could
solve some discrimination problems of NDF with the DPM strategy (when d5 is classified
as more similar to the training data than d6) but other discrimination problems arise; for
example, d2 has a lower similarity score than d5 or d7. Again, this is because the quality of
the representative vector created from the trained NDF model is fairly poor. The weighted
combination of the two methods is achieved with λ = 0.416 which slightly favors DPM
over V-PM. The combination method (CS) performs better but the results are still far from

Mach Learn (2009) 74: 191–234 209

satisfactory. With the ILoNDF model, the application of V-PM changes the ranking order of
the first four data (d1, d2, d3 and d8) such that the greater the number of relevant features,
the higher the classification score; but the significant change in the ranking concerns d4 and
d7. Note that if f5 were a noisy feature it would be better to use the DPM strategy, otherwise
V-PM will be preferable. As the variance of the representation vector of the ILoNDF model
is rather low, the combination method will favor DPM with λ = 0.383 in order to prevent
likely problems.

3.7 Setting the threshold

Up to this point, classification scores (cf. Eq. 17, Eq. 20 and Eq. 21) were only used to rank
data by similarity to the positive class. To make a decision boundary discriminating between
the positive and negative data, a threshold should be set on the classification scores: if the
classification score of a datum is less than a specified threshold then the datum is classified
as negative, otherwise it is classified as positive.

As with many machine learning approaches, the problem of setting an appropriate thresh-
old to distinguish between two classes using data from just one is nontrivial. Indeed, most of
the adapted algorithms provide a user-defined parametric threshold like the one-class SVM
approach (Schölkopf et al. 2001). Thus, the decision threshold must be provided by the user
which may be neither desirable nor easy. Here we propose a simple thresholding strategy
which can be applied to any on-line learning approach. In developing our thresholding strat-
egy, we consider the following two aspects:

1. The classification scores corresponding to the data after being used in the training process
can be used as a potentially good indicator of classification scores of data which tend to be
positive and which are easy to be detected owing to the fact that they are strongly similar
to the data used for training to model the positive class. Consequently, the mean of these
scores can be accepted as an upper bound for the decision threshold of the classification.

2. The classification scores corresponding to the data before being used in the training
process can be used as a potentially good indicator of classification scores of data which
tend to be positive but which are not easy to be detected owing to the fact that they are not
strongly similar to the data used for training to model the positive class. Consequently,
the mean of these scores can be accepted as an lower bound for the decision threshold of
the classification.

So, at each learning step, we calculate these two mean values over training data and a
combination value is obtained as a weighted mean of the two values, one being weighted by
the number of trained data, other being weighted by the number of untrained data. Using this
weighting is important to quantify reliability of each of the mean values computed across
learning steps. The final threshold is a percentage ratio τ of the weighted mean obtained
over the learning steps (see Algorithm 2).

4 Multivariate statistical-based approaches

Principal Component Analysis (PCA) is one of the most widely used multivariate techniques
and it has found application in a wide variety of areas (Jolliffe 1986). The PCA model is a
transformation in which the data are represented by orthogonal features, called the principal
components, which are linear combinations of the original features. The principal compo-
nents (PCs) are extracted so that the first PC accounts for the maximum variation of the

210 Mach Learn (2009) 74: 191–234

Algorithm 2 ThresholdSetting(X,T)
Inputs:

X = {x1, . . . , xn} a set of positive training data;
F = {f1, . . . , fm} a set of features used for representing the data.

Output:
s the threshold value.

Initialization:
Φ0 = 0 a zero matrix; subLX0 = {}; subNLX0 = X.
s = 0; nbStep = 0;

begin
for i = 0 to n do

if ((i % n
10) ! = 0) then

subLXi = subXi−1 ∪ xi

subNLXi = subNLXi−1 \ xi

else
(Φi,Pi) = LearnILoNDF(subLXi , T ,Φi−1)
s1 = MeanClassificationScores(subLXi , Pi)

s2 = MeanClassificationScores(subNLXi , Pi)

s = s + (|subLXi | × s1 + |subNLXi | × s2)/n

nbStep = nbStep + 1
end if

end for
s = τ s

nbStep
end

Note:
MeanClassificationScores(X,P) returns the mean of classification scores of data in X using
one of the formulas Eq. 17, Eq. 20 or Eq. 21.

data and subsequent orthogonal PCs account for progressively smaller amounts of resid-
ual variation. Typically, PCs are found by extracting the eigenvectors and eigenvalues of
the covariance matrix of the data. The eigenvectors denote the direction of the principal
components and the eigenvalues indicate the variance accounted for by the corresponding
principal component. It is often the case that a small number of the first extracted princi-
pal components capture the majority of the total variation and are sufficient to replace the
original features without major loss of information. Accordingly, only k components with
the largest variances (that is, the eigenvectors with the largest associated eigenvalues) are
preserved when constructing the target PCA model (there are a number of different ways to
establish the dimensionality of the PCA model subspace (k), such as the average eigenvalue
approach which is adopted in the present investigation, Valle et al. 1999). In the following
we present a brief review of two multivariate statistical indexes relying on the use of PCA
and their application to one-class classification.

4.1 PCA residuals

PCA may be viewed as a subspace decomposition in which the feature space of the posi-
tive data is divided into two orthonormal subspaces, the PCA model and residual subspaces.
Let X ∈ �n×p be a sample of positive training data with n being the number of examples

Mach Learn (2009) 74: 191–234 211

and p the number of features. After PCA transformation the PCA model subspace, which is
spanned by the first k principal components (Pk), is associated with systematic data varia-
tions in agreement with the feature correlations. In contrast, the residual subspace, which is
spanned by the remaining n-k principal components, is associated with random variations
due to errors or noise in the positive data. Therefore, a new datum xi can be decomposed as

xi = x̂i + x̃i

with x̂ = PkP
T
k x and x̃ = (I −PkP

T
k)x being the projections of the datum xi onto the model

and residual subspaces, respectively. The “goodness of fit” of the data to the positive class
can then be assessed by Squared Prediction Error (SPE) of the residual. This statistic is also
called the Q-statistic index and is defined as:

SPE = ‖x̃i‖2 = xT
i (I − PkP

T
k) xi .

A negative datum is predicted when SPE exceeds a Q-statistic threshold (Jackson and
Mudholkar 1979).

4.2 Hotelling’s T 2 test

While the analysis of PCA residuals offers a way to test if a datum shifts outside the model
space, Hotelling’s T 2 statistic provides an indication of novel variability within the model
space. Having established a PCA model of the positive training data, Hotelling’s T 2 statistic
can be computed based on the first k principal components of the model (Kim and Beale
2002; Detroja et al. 2007). Let xi be a 1 × n data vector auto-centered by the mean of the
positive training data. The T 2 statistic for the data is:

T 2
i = tTi Λ−1ti = xT

i PkΛ
−1P T

k xi

where ti = P T
k xi is the orthogonal projection of the data xi into the model subspace de-

fined by the k first principal components, and Λ is a diagonal matrix containing the first k

eigenvalues of the covariance matrix of the positive training data.
A large value of T 2 indicates a large deviation of the data under consideration from

the positive class. A threshold (T 2
α) can be obtained using the F-distribution (Detroja et al.

2007).

5 Auto-associative neural networks

Auto-associative neural networks (AANNs), also known as auto-encoders or “bottleneck”
neural networks, are a special kind of feed-forward multilayer perceptron network. Orig-
inally introduced by Rumelhart et al. (1986), AANNs are trained to produce an approx-
imation of the identity mapping between the input and the output of the network. In its
conventional form, an auto-associative neural network consists of an input layer of neuron
units, followed by one or more hidden layers, and an output layer of the same dimension
as the input layer (see Fig. 4). One of the hidden layers, referred to as the “bottleneck”
layer, should be of smaller dimension than either input or output (or other hidden layers
if any). This restriction is required to inhibit the network from memorizing the data while

212 Mach Learn (2009) 74: 191–234

Fig. 4 A schematic presentation
of a three-layer auto-associative
neural network

capturing the most significant features, similar to principal components, of the input data by
compressing their redundancies.6,7

The principle of applying AANNs for solving one class classification problems involves
two processes: training the network and identifying a suitable decision threshold for it. The
goal of training is to properly adjust the connection weights of the network under a super-
vised learning scheme in such a way that the network is able to reconstruct in its output layer
the positive data presented as input. Back propagation (Baldi et al. 1995) is the most widely
employed learning algorithm to minimize the mean-squared error (MSE) between the input
X and the output Y vectors:

MSE = 1

N

N∑

i=1

‖X − Y‖2

where N is the number of positive training data.
After training, classification may be performed with the AANN under the assumption

that positive data will accurately be reconstructed while negative data will not. However,
finding an accurate boundary (decision threshold) between the positive and negative data is
problematic. In our preliminary experiments, we adopted the practice of Japkowicz et al.
(1995), whose method considers the upper-bound of the reconstruction error of the positive
training data at each training epoch and relaxes it by a fixed percentage (e.g. 25%). New data

6Typically, AANNs are most known as compression networks with a bottleneck layer of smaller dimension
than the input layer. Even though, the design of AANN with no bottleneck, that is, with hidden layer of
higher dimension than the input layer, albeit feasible (Japkowicz et al. 2000), can be applied in the case of
one-class classification. Experimentally, we have investigated this possibility but found that non-bottleneck
AANNs are not inherently better than bottleneck AANNs. Often, the non-bottleneck AANNs yielded slightly
worse results. Furthermore, they would not be an efficient design because of the increased computational
requirements posed by larger numbers of hidden neurons.
7The mapping of the input space can be either linear or non-linear depending on the architecture of the
network and the type of activation functions of the output layer. When used with linear activation functions, an
AANN will perform a type of principal component analysis. If non-linear functions are introduced, the AANN
network will be able to solve problems where the principal component analysis is degenerate (Japkowicz et
al. 2000; Cottrell and Munro 1988). Nonlinearity can also be achieved by adding additional hidden layers
with non-linear functions between the bottleneck layer and the input and output layers (Oja 1991). However,
the training of such networks is more difficult and requires more computational time (Kambhaltla and Leen
1994).

Mach Learn (2009) 74: 191–234 213

are then classified by comparing their reconstruction error to that of the relaxed boundary.
If the error exceeds the boundary in at least a certain proportion of the epochs considered,
a datum is classified as negative, else it is classified positive. However, we found the pre-
cision of this technique to be very low, so we decided to use a somewhat different strategy
consisting of computing the mean of the reconstruction error of the training data at each of
the k first epochs (in our experiments, k is set to two times the number of the best epoch
corresponding to the lowest validation error). The average of the mean values over the k

epochs is then used as the decision threshold.
For the experiments reported in this paper, we developed and trained a three-layer auto-

associative neural network using a standard back-propagation algorithm. The number of
neurons in the input and output layers (I = O) was determined by the dimensionality of
the input data, while we experimented with various values for the number of units in the
hidden layer (H) . We considered the proportion of hidden units (H) to input units (I) and
tested H

I
at 10%, 25%, 50% and 75%. The learning rate and the momentum factor of the

back-propagation learning algorithm were fixed at 0.1 and 0.9, respectively.

6 One-class support vector machines

Support Vector Machines (SVM) were introduced by Vapnik (1995) as an effective learning
algorithm that operates by finding an optimal hyperplane to separate the two classes of
training data. The basic idea behind SVM is to “non-linearly” map the input space of the
training data into a higher dimensional feature space corresponding to an appropriate kernel
function. SVM then finds a linear separating hyperplane in the feature space by maximizing
the distance, or margin, to the separating hyperplane of the closest training data from the
two classes (cf. Fig. 5(a)).

An extension of SVM (1-SVM) was subsequently proposed by Schölkopf et al. (2001)
to handle one-class classification. The strategy is to separate the training data (positive ex-
amples) from the origin (considered as negative examples) with maximum margin in the
feature space. Under this strategy, a bounding hypersphere is computed around the training
data in a way that captures most of these data while minimizing its volume (see Fig. 5(b)).
The algorithm can be briefly described as follows. Given a training data set of l positive
examples {x1, . . . , xl}, xi ∈ �n and Φ : X → F a feature map which maps the given data X

Fig. 5 Geometry interpretation of SVM-based classifiers: (a) Two-class SVM classifier. (b) One-class SVM
classifier

214 Mach Learn (2009) 74: 191–234

into the feature space F , a one-class SVM requires solving the quadratic problem:

min
w,ξ,ρ

1

2
w.w + 1

νl

l∑

i=1

ξi − ρ

(22)
subject to (w.Φ(xi)) ≥ ρ − ξi, ξi ≥ 0, i = 1, . . . , l,

where ξi are slack variables that allow some data to be misclassified and ν ∈ [0,1] is a free
parameter that controls the impact of the slack variables, i.e. the fraction of training data
which are allowed to fall outside the hypersphere (when ν = 0, it becomes the hard margin
case).

Introducing Lagrange multipliers αi and applying the Karush-Kuhn-Tucker conditions
(Fletcher 1987) for the primal problem above, we obtain:

w =
∑

i

αiΦ(xi). (23)

We can now solve the primal quadratic problem by solving its dual problem, given by:

min
α

1

2

∑

ij

αiαjK(xi, xj)

(24)
subject to 0 ≤ αi ≤ 1

νl
,

∑

i

αi = 1

where K(xi, xj) = Φ(xi) · Φ(xj) is the kernel function corresponding to the dot product of
the two data in the feature space. The data xi with non-zero αi are the so-called support
vectors.

Once the optimal values of the parameters are found, one can classify the new data ac-
cording to the following decision function: f (x) = sgn(

∑
i αiK(xi, x) − ρ) such that the

data corresponding to f (x) ≥ 0 lie within the hypersphere and are classified as positive
data. Otherwise, they lie outside the hypersphere and they are classified as outliers or nega-
tive data.

One-class SVM has the same advantages as two-class SVM classification, such as ef-
ficient handling of high-dimensional and sparse feature spaces, and handling of non-linear
classification using kernel functions. However, one-class SVM requires many more positive
training data to give an accurate decision boundary because its support vectors come only
from the positive data. In our study, we used a free SVM software package called mySVM
(Rüping 2000) for 1-SVM training and classification experiments.

7 Experimental settings

7.1 Data collections

The empirical evaluations are carried out over two test corpora: Reuters-215788 and Web-
KB.9 These corpora are publicly available and have been widely used for text categorization
tasks.

8http://www.daviddlewis.com/resources/testcollections/reuters21578/.
9http://www.cs.cmu.edu/webkb/.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.cs.cmu.edu/webkb/

Mach Learn (2009) 74: 191–234 215

Table 3 The number of training and testing documents of the Reuters and WebKB corpora

Reuters WebKB

Category Train Test Category Train Test

corn 181 56 staff 116 21

ship 197 89 depart 181 1

wheat 212 71 project 484 20

trade 369 117 course 886 44

interest 347 131 faculty 1089 34

crude 389 189 student 1513 128

grain 433 149

money 538 179

acq 1650 719

earn 2877 1087

• Reuters-21578. The Reuters-21578 newswire collection (distribution 1.0) is a multi-
label dataset widely used in text categorization research (Debole and Sebastiani 2005;
Dumais et al. 1998). We followed the ModApte split which consists of 9603 training doc-
uments and 3299 test documents classified into 135 topic categories. The distribution of
the documents among the categories is highly skewed; the top 10 most common categories
contain 75% of the training documents and the remaining documents are distributed among
the other categories. Our experimental results are reported for the set of the 10 most com-
mon categories (out of the total of 135). For these 10 categories, the number of training
documents per category also varies widely, from 181 to 2877 with an average of 719.3
documents per category.

• WebKB. The WebKB collection contains HTML pages gathered from computer science
departments of various universities. There are about 8280 web pages which are divided into
seven categories: student, faculty, staff, department, course, project, and other. In our exper-
iments, we ignore the category “other” due to its unclear definition. The number of training
documents per category varies from 116 to 1090 with an average of 711.7 documents per
category. The WebKB collection is a single-label dataset, however, it is a relatively difficult
dataset since its words have been found to be very scattered over categories making these
later very closely related to each other and thus hard to discriminate. Table 3 gives the num-
ber of training and testing documents in each of the categories of the Reuters and WebKB
corpora.

7.2 Document representation

We performed standard text preprocessing steps: document parsing, tokenization, stop word
removal and stemming. Only single words were used for content representation. The in-
formative word terms were selected according to document frequency (DF), such that only
terms that appeared in the highest number of documents are retained. In order to explore the
influence of the dimensionality of representation space (i.e. feature set size) on classification
performance, we experimented with four document frequency thresholds: (T10) where only
the 10 more frequent terms are retained, (T20) where only the 20 more frequent terms are
retained, (>10%) where only the terms that appear in at least 10% of the training documents
are retained, and (>5%) where only the terms that appear in at least 5% of the training doc-
uments are retained and considered for use in document representation. The retained terms

216 Mach Learn (2009) 74: 191–234

are used for representing both training and testing documents by vectors of term-weights.
Several versions of term weighting schemes were implemented:

– Normalized Term Frequency (NTF). Term Frequency (TF) is the number of times a term
appears in a given document. Cosine normalization, where each term weight is divided
by the Euclidean document length, is afterwards used to remove the advantage of long
documents over the short ones (Salton and Buckley 1988).

– Normalized log(TF + 1). A slight variation of NTF is to take the logarithm of term fre-
quency thereby reducing the gap between large differences in term frequencies.

– Augmented NTF = (0.5 + 0.5 ∗ TF
max TF) where max TF is the maximum TF for all terms

in the given document.
– Binary. This weighting scheme assigns the weight 1 to a given term if it appears at least

once in the given document, else 0.

It is worth noting that both term selection and term weighting should be category-specific
processes because only information of the category under study is supposed to be avail-
able in the context of one-class classification (e.g. Manevitz and Yousef 2001). Therefore,
different sets of terms were separately selected for each category using only the training
documents belonging to that category. Training documents of each category and the test
documents were then represented using the specific set of terms.

7.3 Evaluation metrics

Performance was evaluated mainly with the standard Precision and Recall metrics. Precision
quantifies the percentage of data predicted to be positive by the classifier that are actually
positive; Recall quantifies the percentage of positive data predicted to be positive by that
classifier. Firstly, we evaluated the effectiveness of classifiers for ranking data from high
to low expectations of being positive. This is motivated by the need to assess the absolute
learning performance of the classifiers independent of any specific threshold. Furthermore,
some applications require the data to be ranked instead of (or in addition to) hard classi-
fication labels (in medical applications this is common). To this end, the Recall-Precision
(R-P) curve is suitable for evaluating classifiers by integrating their performance over a
range of decision thresholds. It depicts the relation between recall (x-axis) and precision
(y-axis) varying the range of thresholds corresponding to the 11 standard levels of recall
(0%,10%, . . . ,100%) (Salton 1971). The lower the misclassification error of a classifier,
the closer the corresponding point is to the upper right-hand corner of the R-P curve. The
Mean Average Precision MAP measure, which is roughly the area under the R-P curve, is
also used in this investigation.

Though the effectiveness of classifiers is closely related to their ranking effectiveness,
this relationship is not strong enough to use only ranking measures to evaluate classifica-
tion models. Measures that incorporate the choice of decision thresholds are necessary to
assess the thresholding strategies and then to evaluate classification performance in realis-
tic conditions. To this end, we used the F1 measure, which reflects the balanced harmonic
mean of Precision and Recall for certain decision thresholds (van Rijsbergen 1979). The
overall performance results are averaged across categories by means of macro and micro
averaging scores (Salton 1971; Lewis 1991). Macro averaging is the standard average of
the individual values of a given measure which are obtained for each of the categories, so
each category has the same weight regardless of how many documents belong to it. In con-
trast, micro averaging gives equal weight to every document by merging the decisions of
individual classes and globally computing the value of a given measure. In general, micro

Mach Learn (2009) 74: 191–234 217

averaging scores tend to be dominated by the classifier’s performance on common cate-
gories, while macro averaging tend to be biased towards the classifier’s performance on rare
categories.

8 Results and discussion

In this section we present experimental results of classification from both corpora under
study. First, we are interested in analyzing the methods for robustness with regard to different
initial settings. For this purpose, four different dimensions for the term representation space
and four variants of weighting schemes were implemented for each of the corpora (Reuters
and WebKB, cf. Sect. 7.2). The robustness and flexibility of the studied methods were also
investigated under various parameter settings. Next, we focus on comparing the performance
of the ILoNDF model with that of the best methods identified. Finally, we give a short
summary of the main findings emanating from the results.

8.1 Results for different settings

8.1.1 NDF vs. ILoNDF

The first series of experiments studied the behavior of the NDF and ILoNDF methods. Ta-
bles 4 and 5 summarize the MAP scores under different weighting schemes and various
dimensions of the representation space. Figures 6 and 8 depict the 11-point Recall-Precision
curves of the methods according to various dimensions of the representation space on the
Reuters and WebKB corpora. Figures 7 and 9 depict the 11-point Recall-Precision curves
of the methods according to various weighting schemes. The results are reported when the
classification scores are computed with respect to the direct-projection method (DPM), the

Table 4 Summary of the MAP scores of the NDF model on the Reuters and WebKB corpora under different
weighting schemes and various dimensions of the representation space. Bold entries denote the statistically
highest scores among the different settings while underlined entries indicate the performance scores at the
reference settings supported by the overall results

Reuters WebKB

T10 T20 >10% >5% T10 T20 >10% >5%

DPM NTF 0.1634 0.1861 0.2105 0.2891 0.2382 0.23 0.1937 0.2650

logNTF 0.2008 0.2088 0.2023 0.3312 0.2258 0.2154 0.2066 0.3681

ANTF 0.2561 0.2383 0.2110 0.3277 0.2073 0.2168 0.1941 0.2792

binary 0.1850 0.2112 0.2015 0.3117 0.2391 0.2165 0.1798 0.2646

V-PM NTF 0.4798 0.4833 0.3646 0.3222 0.3238 0.3135 0.2809 0.4038

logNTF 0.5064 0.4781 0.3233 0.2710 0.4010 0.4802 0.32 0.3264

ANTF 0.5012 0.4636 0.3109 0.2556 0.5261 0.4859 0.3031 0.2831

binary 0.4791 0.4490 0.3101 0.2525 0.5244 0.3972 0.3291 0.2770

CS NTF 0.4811 0.4838 0.3645 0.3556 0.3234 0.3136 0.2802 0.2891

logNTF 0.5068 0.4779 0.3233 0.3529 0.4009 0.4804 0.3516 0.4055

ANTF 0.5006 0.4635 0.3110 0.3512 0.5257 0.4863 0.2897 0.4075

binary 0.4770 0.4532 0.3099 0.3302 0.5208 0.4091 0.2516 0.4115

218 Mach Learn (2009) 74: 191–234

Table 5 Summary of the MAP scores of the ILoNDF model on the Reuters and WebKB corpora under
different weighting schemes and various dimensions of the representation space. Bold entries denote the
statistically highest scores among the different settings while underlined entries indicate the performance
scores at the reference settings supported by the overall results

Reuters WebKB

T10 T20 >10% >5% T10 T20 >10% >5%

DPM NTF 0.4390 0.4448 0.4770 0.5254 0.2268 0.2428 0.3378 0.3443

logNTF 0.5130 0.5226 0.6001 0.6699 0.2882 0.3645 0.4814 0.5038

ANTF 0.5584 0.5560 0.6236 0.6857 0.3592 0.4796 0.5094 0.5102

binary 0.5755 0.5494 0.6044 0.6496 0.5221 0.5077 0.5117 0.5014

V-PM NTF 0.5322 0.5294 0.5308 0.5492 0.2495 0.3262 0.3702 0.3901

logNTF 0.6161 0.6267 0.6540 0.6748 0.3720 0.4414 0.3886 0.4903

ANTF 0.6125 0.6434 0.6773 0.6937 0.4964 0.3836 0.4865 0.4969

binary 0.6133 0.6189 0.6451 0.6556 0.5167 0.4040 0.4929 0.4901

CS NTF 0.4903 0.4883 0.5032 0.5376 0.2466 0.2667 0.3528 0.3568

logNTF 0.5765 0.5820 0.6318 0.6762 0.3168 0.4512 0.4813 0.5067

ANTF 0.6081 0.6117 0.6544 0.6962 0.4963 0.4767 0.5051 0.5118

binary 0.6107 0.6107 0.6380 0.6599 0.5285 0.4170 0.4970 0.4982

vector-based projection method (V-PM) and the weighted combination of the DPM and V-
PM scores (CS).

From the results, we observe that the DPM method is not suitable for the NDF model in
the context of classification because of the bit-wise strategy which is based on comparing
the current input data with just its closest match in the training data. Often the model works
substantially better when the V-PM method is applied. A further improvement is achieved
by applying the combination method (CS), particularly for the >5% dimensionality of the
documents. With ILoNDF, the difference between DPM and V-PM is within a relatively
narrow range. On the Reuters corpus, V-PM yields significantly better results than DPM but
performs worse on the WebKB corpus. The explanation has to do again with the fact that the
V-PM method favors data containing high proportions of features appearing in the training
data. If the representation space is not well formed (i.e., there are many noisy features and
few relevant features), V-PM should have poor performance. As can be seen from Table 6,
the terms in the WebKB corpus are quite scattered. Statistically, on the WebKB corpus the
dispersion of terms over categories is roughly twice as high as that found on the Reuters
corpus. Consequently, there are many fewer specific terms for each category and many non
discriminating (noisy) terms in the WebKB corpus. This is especially clear when comparing
the T10 and T20 dimensionality on the WebKB corpus. The effect of noisy terms may be
partially reduced by certain weighting schemes which consider the term frequencies within
the documents, but the performance is still far from satisfactory. The CS method presents a
reasonable solution in such a situation.

On the basis of the above findings, the focus of the following discussion will only cover
the behavior of the NDF/ILoNDF models with the CS method.

When comparing the impact of the different initial settings, we observe that weighting
schemes have almost the same impact on both models (cf. Figs. 7 and 9). In contrast with
two-class classification, term frequency (NTF) produces the worst results with one-class
classification. Better performance is obtained by logNTF but it is still lower than that of other

Mach Learn (2009) 74: 191–234 219

Fig. 6 The 11-point Recall-Precision curves of the NDF model according to various dimensions of the rep-
resentation space on the Reuters and WebKB corpora. Results are reported according to the ANTF weighting
scheme

weighting schemes. The ANTF weighting scheme has not yet been evaluated for one-class
classification. In this study, ANTF turns out to perform better than the binary representation
in almost all situations; accordingly, the ANTF representation was chosen to be the reference
weighting scheme for the NDF and ILoNDF models. Figures 6 and 8 show that the models
behave differently with respect to the dimensionality of the representation space. ILoNDF

220 Mach Learn (2009) 74: 191–234

Fig. 7 The 11-point Recall-Precision curves of the NDF model according to various weighting schemes on
the Reuters and WebKB corpora. Results are reported according to the T 10 dimensionality of the represen-
tation space

shows quite stable performance little affected by the size of term set, and tends to achieve
the best results for relatively high-dimensional spaces (>5% dimensionality). In contrast, the
size of the term set can seriously affect the performance of NDF, which shows degradation
in performance as the number of terms increases.

Mach Learn (2009) 74: 191–234 221

Table 6 The dispersion percentage of terms over categories for both Reuters and WebKB corpora

T10 T20 >10% >5%

Reuters 21.7% 20.6% 27.4% 32.3%

WebKB 37% 42.6% 45.5% 49.1%

Table 7 Summary of the MAP scores of PCA residuals, Hotelling’s T 2 test, AANN (H/I = 10%), and
1-SVM (linear kernel function) on the Reuters and WebKB corpora under different weighting schemes and
various dimensions of the representation spaces. Bold entries denote the statistically highest scores among the
different settings while underlined entries indicate the performance scores at the reference settings supported
by the overall results

Reuters WebKB

NTF logNTF ANTF binary NTF logNTF ANTF binary

PCA T10 0.3167 0.4202 0.4680 0.3255 0.2529 0.2654 0.2342 0.2650

residuals T20 0.3308 0.4307 0.4772 0.2095 0.2198 0.2443 0.2303 0.2112

>10% 0.2967 0.3915 0.4314 0.1530 0.2568 0.2641 0.2472 0.1799

>5% 0.3569 0.4307 0.4898 0.1694 0.2880 0.3304 0.2889 0.1834

Hotelling T10 0.1740 0.1715 0.1801 0.1492 0.2099 0.2321 0.3251 0.3713

T 2 test T20 0.1562 0.1553 0.1583 0.1028 0.1988 0.2985 0.2940 0.2441

>10% 0.1736 0.2148 0.1828 0.0713 0.2039 0.2707 0.3596 0.1674

>5% 0.1432 0.1952 0.1892 0.0802 0.2043 0.2420 0.2619 0.1726

AANN T10 0.4261 0.5024 0.3452 0.2989 0.2460 0.2776 0.3217 0.4099

T20 0.4209 0.4852 0.2363 0.1466 0.2492 0.3013 0.2324 0.2448

>10% 0.4234 0.5903 0.1294 0.1380 0.3451 0.4055 0.1733 0.1703

>5% 0.4495 0.6272 0.1370 0.1148 0.3361 0.43 0.1824 0.18

1-SVM T10 0.4846 0.5439 0.5756 0.5823 0.2360 0.2893 0.3387 0.5377

T20 0.4703 0.5333 0.5589 0.5510 0.2479 0.4512 0.4819 0.4901

>10% 0.4838 0.5711 0.5832 0.4788 0.3271 0.3954 0.5030 0.3725

>5% 0.5152 0.6204 0.6356 0.4277 0.3384 0.5035 0.5038 0.3277

Overall, if we contrast the performance of NDF with its improved version ILoNDF, we
find that ILoNDF substantially outperforms NDF, particularly with high-dimensional data
spaces.

8.1.2 Other candidate one-class classification methods

The goal of the second series of experiments was to examine the effect of different settings
on the behavior of other candidate methods, viz. PCA residuals, Hotelling’s T 2 test, AANN
and 1-SVM. Table 7 summarizes the MAP scores achieved by the methods under different
weighting schemes and various dimensions of the representation space. Figure 10 depicts
the 11-point Recall-Precision curves of the methods according to the best weighting scheme
while varying dimensions of the representation space on the Reuters and WebKB corpora.
Figures 11 depicts the 11-point Recall-Precision curves of the methods according to the best
dimensionality while varying the weighting schemes.

222 Mach Learn (2009) 74: 191–234

Fig. 8 The 11-point Recall-Precision curves of the ILoNDF model according to various dimensions of the
representation space on the Reuters and WebKB corpora. Results are reported according to the ANTF weight-
ing scheme

Overall, the PCA-based methods (PCA residuals and Hotelling’s T 2 test) show very poor
performance on both the Reuters and WebKB corpora. The performance of PCA residuals
is somewhat better than that of T 2 on Reuters but rather worse on WebKB. It is somewhat
misleading to identify the best initial settings for these methods. Roughly speaking, both
the logNTF and ANTF weighting schemes appear to be good candidates for PCA residu-

Mach Learn (2009) 74: 191–234 223

Fig. 9 The 11-point Recall-Precision curves of the ILoNDF model according to various weighting schemes
on the Reuters and WebKB corpora. Results are reported according to the >5% dimensionality of the repre-
sentation space

als, particularly when applied on high-dimensional data. In contrast, Hotelling’s T 2 test may
produce better results on low-dimensional data but the best weighting scheme varies depend-
ing on the collection. The method seems to work better with the ANTF weighting scheme
on the Reuters corpus, while best results are obtained with binary weights on the WebKB
corpus. In some respects, the results reveal a degree of similarity between the performance

224 Mach Learn (2009) 74: 191–234

Table 8 The impact of the network size (the number of neuron units in the hidden layer (H) with respect
to that of the input/output layers (I)) of AANN on the classification performance according to the MAP
scores (weighting scheme is logNTF). Bold entries denote the statistically highest scores among the different
settings while underlined entries indicate the performance scores at the reference settings supported by the
overall results

(H/I) Reuters WebKB

10% 25% 50% 75% 10% 25% 50% 75%

T10 0.5024 0.5042 0.4580 0.4877 0.2776 0.3030 0.2509 0.2962

T20 0.4852 0.4801 0.5072 0.4762 0.3013 0.2868 0.2790 0.2981

>10% 0.5903 0.5829 0.6257 0.5918 0.4055 0.3836 0.4035 0.4084

>5% 0.6272 0.6110 0.5947 0.6335 0.43 0.4183 0.3785 0.3510

of the PCA-based methods and that of NDF associated with DPM (cf. Table 4). This is
probably because all of these methods achieve a high degree of decorrelation amongst data.
The decorrelation ensures the detection of data that significantly deviate from the training
data. However, if there is some correlated noise in the representation of the training data, the
decorrelating mechanism may significantly affect the classification results.

The AANN method shows a better performance than the PCA-based methods. However,
it shows great sensitivity with regard to the initial settings such as weighting schemes and
dimensionality of the representation space, but it is less affected by the size of its hidden
layer (cf. Table 8). Its best performance is obtained at the highest dimension (>5%) using
the logNTF weighting scheme and a small number of hidden units (H/I = 10%).

Among the four candidate methods tested, 1-SVM achieves the best performance. When
using the binary weighting scheme 1-SVM shows constant degradation in classification per-
formance as the dimensionality of the representation space increases, which is in agreement
with previous studies (Manevitz and Yousef 2001). However, 1-SVM shows an opposite
tendency when using the other weighting schemes and attains its best performance at the
highest dimensionality (>5%) through the use of the ANTF weighting scheme. In addition
to the linear kernel function, the 1-SVM classifier was tested with three non-linear kernel
functions (Polynomial, Radial basis, Sigmoid). Results shown that non-linear kernels are
not particularly useful. This is because text classification problems are generally linearly
separable so no mapping to a higher dimensional space is required (Joachims 2001). On the
other hand, the choice of an appropriate value of the parameter ν is an important setting
which can make 1-SVM more tolerant to noise that might be present in the training data.
Figure 12 displays the curves of the MAP scores on the Reuters and WebKB corpora when
varying the value of ν. By increasing ν, the description of the positive class becomes more
specific to the training data, and consequently recognizing a new positive data will be more
difficult. The optimal value of ν was chosen at the best value of the MAP scores and was
found to be very low on both Reuters and WebKB corpora (ν � 0.001). The reason is that
experimental benchmarks are usually carefully labeled and so are unlikely to contain many
noisy data. However, we believe that setting such parameters, without any prior knowledge
about the nature of the training data, is ultimately a matter of exploration.

8.1.3 Evaluation of thresholding strategies

Next we evaluate classification performance after applying the threshold strategies associ-
ated with the methods. Given the poor performance of NDF, PCA residuals and Hotelling’s

Mach Learn (2009) 74: 191–234 225

Fig. 10 The 11-point Recall-Precision curves of PCA residuals, Hotelling T 2, AANN and 1-SVM according
to various dimensions of the representation space on the Reuters and WebKB corpora (Weighting schemes
are respectively logNTF, ANTF, logNTF and binary)

226 Mach Learn (2009) 74: 191–234

Fig. 11 The 11-point Recall-Precision curves of PCA residuals, Hotelling T 2, AANN and 1-SVM accord-
ing to various weighting schemes on the Reuters and WebKB corpora. The results of Hotelling T 2 test are
reported under the T10 dimensionality while the results of other methods are reported under the >5% dimen-
sionality

Mach Learn (2009) 74: 191–234 227

Fig. 12 The MAP scores of 1-SVM according to ν parameter value (a) on the Reuters corpus (b) on the
WebKB corpus (Weighting scheme is ANTF)

T 2 test, we do not present details of their results, but instead concentrate on ILoNDF, AANN
and 1-SVM. Table 9 summarizes the macroaveraged and microaveraged values of precision,
recall and F1 criteria on the Reuters and WebKB corpora. The F1 values corresponding to
the break-even points achieved by the methods are also given in Table 9. The results are
reported according to the logNTF weighting scheme for AANN and the ANTF weighting
scheme for both ILoNDF and 1-SVM methods.

From the results we notice that the strategy outlined in Sect. 5 for AANN is convincing.
Training the network over several epochs produces a rather reliable estimate of the classifi-
cation scores of positive data. However, the threshold turns out to be biased towards recall
for low dimensionality versus precision for high dimensionality. In both cases there is no
great difference between the F1 values obtained according to this strategy and those accord-
ing to the break-even points. The ability of 1-SVM to strike a compromise between precision
and recall is better on Reuters than on WebKB. Often it assigns relatively more importance
to recall than to precision even for the best value of the ν parameter.

The thresholding strategy of Sect. 3.7 applied to ILoNDF is interesting. The results are
already good without the use of the relaxation parameter τ (i.e. τ is set to 1). In this case
the resulting threshold of classification emphasizes the importance of precision over recall,
especially for high-dimensional data. For the problem of one-class classification, achieving
such precision while maintaining recall as high as possible is usually difficult but desirable,
because target (positive) data are often much rarer than negative data so ensuring high recall
will often be at the cost of precision, and vice versa. In other situations where the recall
may be of higher importance, the relaxation parameter τ can be used to control the trade-off
between precision and recall. An illustration is given in Table 9 when using the relaxation
parameter τ with a value of 0.95.

From Table 9 we can also see that the microaveraged breakeven scores (dominated by
the performance on the common categories) are often higher than the macroaveraged scores
(dominated by the performance on the relatively small categories), meaning that all the
studied classifiers tend to perform better with increasing amounts of training data. How-
ever, there is not much difference between the microaveraged and macroaveraged scores
of ILoNDF. A larger gap can be observed with AANN and 1-SVM. Therefore, we expect
that the performance of ILoNDF may be less sensitive to the amount of training data, even
though classification accuracy will primarily depend on the characteristics of the training
data.

228 Mach Learn (2009) 74: 191–234

Table 9 Comparison of the classification performance of the AANN, 1-SVM and ILoNDF models on the
Reuters and WebKB corpora. Results are reported according to the logNTF weighting scheme for AANN and
the ANTF scheme for 1-SVM and ILoNDF. Bold entries denote the highest performance scores achieved by
the different models

Macroaveraged Microaveraged

P R F1 BKP P R F1 BKP

Reuters AANN T10 0.4695 0.5474 0.4218 0.4886 0.2887 0.4716 0.3582 0.5519

T20 0.4896 0.5221 0.4484 0.4767 0.3845 0.4605 0.4191 0.5518

>10% 0.6850 0.4544 0.5387 0.5561 0.7382 0.5159 0.6074 0.6078

>5% 0.7432 0.4338 0.5421 0.5935 0.8329 0.5081 0.6312 0.7011

1-SVM T10 0.5320 0.5880 0.5150 0.5650 0.4327 0.5644 0.4899 0.5780

T20 0.5043 0.5815 0.5011 0.5512 0.4136 0.5619 0.4765 0.5503

>10% 0.5807 0.5688 0.5591 0.5734 0.6278 0.6167 0.6222 0.6710

>5% 0.6452 0.5598 0.5896 0.6086 0.7321 0.6292 0.6768 0.7192

ILoNDF τ = 1 T10 0.6613 0.5175 0.5708 0.5942 0.6121 0.4672 0.5299 0.5706

T20 0.6151 0.5217 0.5309 0.5851 0.5488 0.5020 0.5749 0.5749

>10% 0.7254 0.5121 0.5871 0.6313 0.7524 0.5297 0.6217 0.7034

>5% 0.8173 0.4708 0.59 0.6552 0.8776 0.5414 0.6696 0.7514

τ = 0.95 T10 0.5171 0.6275 0.5327 – 0.4289 0.5952 0.4985 –

T20 0.5392 0.6183 0.5374 – 0.4424 0.5943 0.5072 –

>10% 0.6626 0.6056 0.6123 – 0.6828 0.6341 0.6575 –

>5% 0.7514 0.5557 0.6291 – 0.8257 0.6249 0.7114 —

WebKB AANN T10 0.2110 0.6242 0.2779 0.2643 0.2713 0.6169 0.3768 0.2853

T20 0.2563 0.5663 0.31 0.2749 0.2473 0.4597 0.3216 0.3042

>10% 0.3037 0.2088 0.2270 0.2914 0.3476 0.2621 0.2989 0.3257

>5% 0.4587 0.4310 0.3746 0.3007 0.4490 0.3548 0.3964 0.3445

1-SVM T10 0.2839 0.6257 0.3231 0.2946 0.3114 0.5524 0.3983 0.4262

T20 0.3150 0.5554 0.3306 0.4584 0.3372 0.4637 0.3905 0.4637

>10% 0.3747 0.5134 0.3652 0.4686 0.3732 0.4274 0.3985 0.5

>5% 0.4297 0.4634 0.4091 0.4810 0.4322 0.4113 0.4215 0.5323

ILoNDF τ = 1 T10 0.2906 0.5898 0.3268 0.4739 0.3351 0.5202 0.4076 0.4718

T20 0.3083 0.5394 0.3136 0.4716 0.3182 0.4234 0.3633 0.4556

>10% 0.3966 0.4509 0.3422 0.4889 0.3489 0.3306 0.3395 0.5081

>5% 0.4620 0.4102 0.3816 0.4784 0.4540 0.3185 0.3744 0.5242

τ = 0.95 T10 0.2439 0.6480 0.3063 – 0.2857 0.6048 0.3881 –

T20 0.2589 0.6007 0.2970 – 0.2806 0.5081 0.3615 –

>10% 0.32 0.5607 0.3359 – 0.3306 0.4839 0.3928 –

>5% 0.3659 0.5012 0.3684 – 0.4094 0.4556 0.4313 –

On a final note, it is worth remarking that while ILoNDF performs generally better than
other methods (cf. Tables 4, 5 and 7), its superiority, in particular with respect to 1-SVM,
becomes less pronounced after thresholding. This suggests that the thresholding strategy
should be further improved to take full advantage of the capacities of the ILoNDF model.

Mach Learn (2009) 74: 191–234 229

Table 10 Summary of the MAP scores and the F1 values at the break-even points achieved by the methods
according to the best weighting scheme and the highest dimensions of the representation space. Bold entries
denote the best performance scores

Reuters WebKB

MAP BKP MAP BKP

NDF 0.3512 0.3584 0.4075 0.4227

AANN 0.6272 0.5935 0.43 0.3007

1-SVM 0.6356 0.6086 0.5038 0.4810

ILoNDF 0.6962 0.6552 0.5118 0.4784

Fig. 13 The 11-point Recall-Precision curves of the methods NDF, AANN, 1-SVM and ILoNDF. The results
are reported on the highest dimensionality of the representation space on the Reuters and WebKB corpora.
The results of AANN are reported using the logNTF weighting scheme, while the ANTF scheme is used for
NDF, 1-SVM and ILoNDF

8.2 A direct comparison of classification methods for high-dimensional data

This section presents a direct comparison of the performance of ILoNDF with that of the
two best methods identified, AANN and 1-SVM. To better understand our modification
of NDF’s learning rule, we also present results of experiments with NDF. The focus of
comparison will be on the highest dimensionality (>5%) of the data. Figure 13 depicts the
11-point Recall-Precision curves of the methods NDF, AANN, 1-SVM and ILoNDF. Figure
14 depicts the MAP scores and the F1 values at the break-even points over the categories of
the Reuters and WebKB corpora. Table 10 summarizes the MAP scores and the F1 values at
the breakeven points achieved by the methods.

From these results we observe the following. The performance of NDF is not particularly
high on the Reuters corpus. ILoNDF substantially exceeds the performance of NDF by
up to 35% according to the MAP scores and by up to 30% according to the F1 scores at
the break-even points on this same corpus. In addition, ILoNDF consistently outperforms
other methods, yielding relative improvements of about 6–7% over 1-SVM and AANN,
respectively. ILoNDF tends to be particularly useful for small ambiguous categories where
the representation of data may be very noisy. This is essentially caused by the fact that these
categories can have many noisy documents in the negative class. For example, the “ship”
and “crude” categories are known to be highly overlapping categories with many common

230 Mach Learn (2009) 74: 191–234

Fig. 14 Comparison between NDF, AANN, 1-SVM and ILoNDF on both Reuters and WebKB on the >5%
dimensionality of the representation space. The results of AANN are reported using the logNTF weighting
scheme, while the ANTF scheme is used for NDF, 1-SVM and ILoNDF

terms (the dispersion of terms over these two categories is 70.5%). Similarly, the “trade”
category has a high degree of confusion with “earn” (the dispersion of terms is 55.5%) but
“earn” is less sensitive to this phenomenon because of the greater number of test documents
associated with “earn” as compared with “trade”. On its own, 1-SVM seems to be slightly
better than AANN with an overall improvement of about +1%.

We find that the performance of all the classifiers degrades from the Reuters corpus to the
WebKB corpus. The gap in performance between NDF and its improved version ILoNDF
decreases from 30–35% to 5–11%. Also, ILoNDF is still slightly better than others, though
the improvement in performance is less significant than that obtained on the Reuters corpus
(generally about +1–8%) according to the MAP scores. Our hypothesis is that the classifi-
cation of web documents can be more difficult than the classification of normal documents.
Indeed, the web documents—unlike many of the corpora typically used for experimental
evaluation of text classification—lacks homogeneity and regularity. As outlined before in
Table 6, the terms in the WebKB corpus are quite scattered. The dispersion of terms over
categories is 49.1% on WebKB and 32.3% on Reuters. So, there are fewer specific terms
for each category against too many non-discriminating (noisy) ones in the case of WebKB
corpus, resulting in lower performance of the classifiers including ILoNDF.

In conclusion, it is important to note that ILoNDF has a comparable computational cost
to 1-SVM, while being significantly less expensive than AANN. However, when tuning
the different parameters of the 1-SVM classifier, a series of validation tests is generally
conducted. Such tests involve a very expensive optimization, and thus will significantly
increase the computational requirements of the 1-SVM method. On the other hand, ILoNDF
does not need such optimization and it turns out to be less sensitive to experimental aspects
such as representation and term weighting schemes.

Mach Learn (2009) 74: 191–234 231

8.3 Summary

The main points emerging from the results of the previous sections can be briefly summa-
rized as follows.

First, we studied the behaviors of NDF and ILoNDF according to the various methods
of calculating classification scores: DPM, V-PM and CS. We also tested their robustness
with respect to various experimental aspects, viz. different weighting schemes and different
dimensions for the representation space. Upon examining the results, the following points
are noted:

• The behaviors of NDF and ILoNDF are very different with respect to DPM and V-PM.
For both models, the method CS presents a reasonable solution to certain problems which
may arise when using the previous methods;

• The best weighting scheme for both NDF and ILoNDF is ANTF;
• The NDF and ILoNDF methods behave differently relative to the dimensionality of the

representation space. NDF yields better results in the case of relatively small-dimensional
spaces, whereas ILoNDF yields better results in the case of relatively high-dimensional
spaces;

• The superiority of ILoNDF over NDF is very apparent, particularly in the case of high-
dimensional spaces.

Next, we examined the behavior of other methods of classification under the various
experimental aspects. The studied methods are the PCA residuals, the Hotelling’s T 2 test,
auto-associative neural networks (AANN), and a one-class version of the SVM classifier
(1-SVM). The experiments revealed the following results:

• The PCA-based methods (PCA residuals and Hotelling’s T 2 test) have very poor perfor-
mance of the same order as NDF. It was difficult to draw clear conclusions on the best
weighting scheme and the best dimensionality for these methods;

• The auto-associative neural networks offer better performance than the PCA-based meth-
ods. They show a great sensitivity to the various experimental aspects. The best results
are obtained using a restricted number of hidden neurons, the logNTF weighting scheme
and the highest dimension of the representation space;

• 1-SVM, among the four studied methods, produced the best results. The best perfor-
mance is reached when using the ANTF weighting scheme and the highest dimensional
representation space. The use of non-linear kernel functions does not bring performance
improvements over the use of linear function in the case of text data. The choice of ap-
propriate value of the parameter ν is very important and affects directly the performance
of 1-SVM.

Concerning the strategies of thresholding adopted for the various methods, we identified
the following findings:

• The thresholding strategy applied to AANN tends to be biased towards recall for low
dimensionality versus precision for high dimensionality;

• 1-SVM assigns relatively more importance to recall than to precision even for the best
value of the ν parameter;

• The thresholding strategy applied to ILoNDF emphasizes the importance of precision
over recall, especially for high-dimensional data, without the use of the relaxation para-
meter τ (i.e. τ = 1). The relaxation parameter can be used to control the trade-off between
precision and recall;

232 Mach Learn (2009) 74: 191–234

• The performance of ILoNDF seems be less sensitive to the amount of training data than
the other studied methods.

Overall, the results of experiments indicated better performance of ILoNDF than the
other studied methods, in particular in the case of high-dimensional spaces.

9 Conclusion and future work

In this study we have introduced ILoNDF, a new high-dimensional on-line learning method
based on novelty detection theory with application to the one-class classification problem.
An attractive aspect of this model is the ability of its generative learning to capture the in-
trinsic characteristics of the training data by continually incorporating information relating
to the relative frequencies of the features of training data and their co-occurrence depen-
dencies. This makes ILoNDF fairly stable and less sensitive to noisy features which may be
present in the representation of the positive data. In addition, ILoNDF is less computation-
ally expensive since it is an on-line method that does not need repeated training and it has no
parameters that need to be tuned. The objective of our experiments was to demonstrate the
potential of the proposed modification of the original NDF model, and to compare ILoNDF
to other candidate methods, viz. PCA residuals, Hotelling’s T 2 test, auto-associative neural
network and a one-class version of SVM classifier in the context of high-dimensional noisy
data. We have explored the effects of various dimensions of the representation space, weight-
ing schemes and normalization techniques. From our experiments we conclude that ILoNDF
is a robust model less affected by initial settings and its performance is often superior to that
of other methods.

As future work, we intend to investigate more thoroughly two issues related to one-class
classification. The first one concerns the exploitation of the rich information in a web doc-
ument and the connectivity among documents to have more accurate classification of this
kind of data. Hyperlinks, HTML tags, and metadata all provide rich information for web
classification, which is not typically available in traditional text classification and which is
often found useful for improving classification performance (Yang et al. 2002). The second
issue concerns the setting of decision thresholds for which we plan to extend our proposed
thresholding strategy by including the specific characteristic of the class under considera-
tion, such as density and exhaustivity (Kassab and Lamirel 2007). Still, feature selection
and weighting schemes are an open research issue. So, more intensive trials are required to
suggest a better performance of one-class classification approaches.

In another aspect, while the main evidence about the behavior of ILoNDF are emphasized
throughout the present work, it is still interesting to analyze its behavior when dealing with
other types of data rather than textual data. An issue of particular interest is to study the
ability of ILoNDF to solve more complex non-linear problems and to compare it to kernel
methods.

References

Aeyels, D. (1990). On the dynamic behaviour of the novelty detector and the novelty filter. In B. Bonnard,
B. Bride, J. P. Gauthier & I. Kupka (Eds.), Analysis of controlled dynamical systems (pp. 1–10).

Baldi, P., Chauvin, Y., & Hornik, K. (1995). Back-propagation and unsupervised learning in linear networks.
In Y. Chauvin & D. E. Rumelhart (Eds.), Back propagation: theory, architectures and applications
(pp. 389–432). Hillsdale: Lawrence Earlbaum Associates.

Mach Learn (2009) 74: 191–234 233

Ben-Israel, A., & Greville, T. N. E. (2003). Generalized inverse: theory and applications (2nd ed.). New
York: Springer.

Brown, M. W., & Xiang, J. Z. (1998). Recognition memory: neuronal substrates of the judgement of prior
occurrence. Progress in Neurobiology, 55, 149–189.

Cottrell, G. W., & Munro, P. (1988). Principal components analysis of images via back propagation. In Pro-
ceedings of the society of photo-optical instrumentation engineers (pp. 1070–1077).

Debole, F., & Sebastiani, F. (2005). An analysis of the relative hardness of Reuters-21578 subsets. Journal of
the American Society for Information Science and Technology, 56(6), 584–596.

Denis, F., Gilleron, R., Laurent, A., & Tommasi, M. (2003). Text classification and co-training from positive
and unlabeled examples. In Proceedings of the ICML 2003 workshop: the continuum from labeled to
unlabeled data (pp. 80–87).

Detroja, K. P., Gudi, R. D., & Patwardhan, S. C. (2007). Plant-wide detection and diagnosis using correspon-
dence analysis. Control Engineering Practice, 15(12), 1468–1483.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algorithms and representations
for text categorization. In Proceedings of the 7th international conference on information and knowledge
management (CIKM 98) (pp. 148–155).

Fletcher, R. (1987). Practical methods of optimization. New York: Wiley.
Fung, G. P. C., Yu, J. X., Lu, H., & Yu, P. S. (2006). Text classification without negative examples revisit.

IEEE Transactions on Knowledge and Data Engineering, 18(1), 6–20.
Greville, T. N. E. (1960). Some applications of the pseudoinverse of a matrix. SIAM Review.
Jackson, J. E., & Mudholkar, G. S. (1979). Control procedures for residuals associated with principal com-

ponent analysis. Technometrics, 21(3), 341–349.
Japkowicz, N. (2001). Supervised versus unsupervised binary-learning by feedforward neural networks. Ma-

chine Learning, 42(1-2), 97–122.
Japkowicz, N., Myers, C., & Gluck, M. A. (1995). A novelty detection approach to classification. In Proceed-

ings of the fourteenth joint conference on artificial intelligence (pp. 518–523).
Japkowicz, N., Hanson, S. J., & Gluck, M. A. (2000). Nonlinear autoassociation is not equivalent to PCA.

Neural Computing, 12(3), 531–545.
Joachims, T. (2001). A statistical learning model of text classification for support vector machines. In Pro-

ceedings of the conference on research and development in information retrieval (SIGIR) (pp. 128–136).
Jolliffe, I. T. (1986). Principal component analysis. New York: Springer.
Kambhaltla, N., & Leen, T. K. (1994). Fast non-linear dimension reduction. In J. D. Cowan, G. Tesauro &

J. Alspector (Eds.), Advances in neural information processing systems (Vol. 6, pp. 152–159).
Kassab, R., & Lamirel, J. C. (2006). A new approach to intelligent text filtering based on novelty detection.

In The 17th Australian database conference (pp. 149–156), Tasmania, Australia.
Kassab, R., & Lamirel, J. C. (2007). Towards a synthetic analysis of user’s information need for more effective

personalized filtering services. In The 22nd ACM symposium on applied computing special track on
information access and retrieval (SAC-IAR) (pp. 852–859).

Kim, J. H., & Beale, G. O. (2002). Fault detection and classification in underwater vehicles using the T 2

statistic. AUTOMATIKA—Journal for Control, Measurement, Electronics, Computing and Communica-
tions, 43(1-2), 29–37.

Kohonen, T. (1989). Self organisation and associative memory (3rd ed.). New York: Springer.
Kohonen, T., & Oja, E. (1976). Fast adaptive formation of orthogonalizing filters and associative memory in

recurrent networks of neuron-like elements. Biological Cybernetics, 21, 85–95.
Lee, H., & Cho, S. (2006). Application of LVQ to novelty detection using outlier training data. Pattern

Recognition Letters, 27(13), 1572–1579.
Lewis, D. D. (1991). Evaluating text categorization. In Proceedings of speech and natural language workshop

(pp. 312–318). San Mateo: Morgan Kaufmann.
Li, X., & Liu, B. (2003). Learning to classify texts using positive and unlabeled data. In Proceedings of the

18th international joint conference on artificial intelligence (IJCAI-03) (pp. 587–594).
Liu, B., Dai, Y., Li, X., Lee, W. S., & Yu, P. S. (2003). Building text classifiers using positive and unlabeled

examples. In International conference on data mining (pp. 179–186).
Manevitz, L. M., & Yousef, M. (2001). One-class SVMs for document classification. Journal of Machine

Learning Research, 2, 139–154.
Markou, M., & Singh, S. (2003a). Novelty detection: a review—part 1: statistical approaches. Signal Process-

ing, 83(12), 2481–2497.
Markou, M., & Singh, S. (2003b). Novelty detection: a review—part 2: neural network based approaches.

Signal Processing, 83(12), 2499–2521.
Marsland, S., Nehmzow, U., & Shapiro, J. (2000). A real-time novelty detector for a mobile robot. In Euro-

pean advanced robotics systems masterclass and conference. Salford: AAAI Press.

234 Mach Learn (2009) 74: 191–234

Noda, M. T., Makino, I., & Saito, T. (1997). Algebraic methods for computing a generalized inverse. ACM
SIGSAM Bulletin, 31(3), 51–52.

Oja, E. (1991). Data compression, feature extraction, and autoassociation in feedforward neural networks. In
K. Kohonen, et al. (Eds.), Artificial neural networks (pp. 737–745).

Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society,
52, 406–413.

Raskutti, B., & Kowalczyk, A. (2004). Extreme re-balancing for SVMs: a case study. SIGKDD Explorer
Newsletter, 6(1), 60–69.

van Rijsbergen, C. J. (1979). Information retrieval. London: Butterworths.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representation by error propaga-

tion. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: explorations in the
microstructures of cognition (pp. 318–362). Cambridge: MIT Press.

Rüping, S. (2000). mySVM-Manual. Universitat Dortmund, Lehrstuhl Informatik VIII, http://www-ai.cs.
uni-dortmund.de/SOFTWARE/MYSVM/.

Salton, G. (1971). The SMART retrieval system: experiments in automatic document processing. Englewood
Cliffs: Prentice Hall.

Salton, G., & Buckley, C. (1988). Term weighting approaches in automatic text retrieval. Information Process-
ing and Management, 24(5), 513–523.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support
of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471.

Schwab, I., Pohl, W., & Koychev, I. (2000). Learning to recommend from positive evidence. In Proceedings
of intelligent user interfaces (pp. 241–247). New York: ACM Press.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1),
1–47.

Sirois, S., & Mareshal, D. (2004). An interacting systems model of infant habituation. Journal of Cognitive
Neuroscience, 16(8), 1352–1362.

Tax, D. M. J., & Duin, R. P. W. (2001). Uniform object generation for optimizing one-class classifiers. Journal
of Machine Learning Research, 2, 155–173.

Valle, S., Li, W., & Qin, S. J. (1999). Selection of the number of principal components: the variance of the
reconstruction error criterion with a comparison to other methods. Industrial & Engineering Chemistry
Research, 38(11), 4389–4401.

Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
Yang, Y., Slattery, S., & Ghani, R. (2002). A study of approaches to hypertext categorization. Journal of

Intelligent Information Systems, 18(2-3), 219–241.
Yu, H., Zhai, C., & Han, J. (2003). Text classification from positive and unlabeled documents. In Proceedings

of the twelfth international conference on information and knowledge management (pp. 232–239). New
York: ACM Press.

Yu, H., Han, J., & Chang, K. C. C. (2004). PEBL: Web page classification without negative examples. IEEE
Transactions on Knowledge and Data Engineering, 16(1), 70–81.

Žižka, J., Hroza, J., Pouliquen, B., Ignat, C., & Steinberger, R. (2006). The selection of electronic text doc-
uments supported by only positive examples. In Proceedings of the 8th international conference on the
statistical analysis of textual data (JADT) (pp. 19–21).

http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/

	Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data
	Abstract
	Introduction
	Related work
	The ILoNDF model
	Background
	NDF implementation
	On the strengths and weaknesses of NDF
	Incremental data-driven learning of NDF
	Using ILoNDF for classification
	An illustration
	Setting the threshold

	Multivariate statistical-based approaches
	PCA residuals
	Hotelling's T2 test

	Auto-associative neural networks
	One-class support vector machines
	Experimental settings
	Data collections
	Document representation
	Evaluation metrics

	Results and discussion
	Results for different settings
	NDF vs. ILoNDF
	Other candidate one-class classification methods
	Evaluation of thresholding strategies

	A direct comparison of classification methods for high-dimensional data
	Summary

	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

